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Abstract

Trust in media has reached a historical low
as consumers increasingly doubt the credibil-
ity of the news they encounter. This grow-
ing skepticism is exacerbated by the preva-
lence of opinion-driven articles, which can in-
fluence readers’ beliefs to align with the au-
thors’ viewpoints. In response to this trend,
this study examines the expression of opinions
in news by detecting subjective and objective
language. We conduct an analysis of the subjec-
tivity present in various news datasets and eval-
uate how different language models detect sub-
jectivity and generalize to out-of-distribution
data. We also investigate the use of in-context
learning (ICL) within large language models
(LLMs) and propose a straightforward prompt-
ing method that outperforms standard ICL and
chain-of-thought (CoT) prompts.

1 Introduction

We live in a world dominated by information where
we observe an unprecedented pace of news and
opinion propagation. There is an increased de-
mand for fact-checking, as inaccurate stories are
disseminated constantly. Opinion pieces and news
stories play an important role in shaping individ-
uals’ ideologies and beliefs. The rise of subjec-
tivity in news reporting has become increasingly
evident in recent years, particularly in online pub-
lications (Blake et al., 2019). In addition, fake
news and misleading articles often rely heavily on
subjective language Jeronimo et al. (2019).

According to estimates, only 41% of publishers
categorize their articles by type (e.g., editorial, re-
view, analysis), and among those that do, there is
a lack of consistency (Harris, 2017). Opinions are
usually conveyed through subjective language and
detecting such language accurately is crucial for ef-
fective fact-checking. Subjective language includes
utterances that communicate emotions, opinions,
and beliefs. In addition, many NLP fields (e.g., sen-

Subj.
Score

Example Sentence

0.93 No punishment could ever be enough for him.
0.55 While what happened to Arthur is rare, the

NPSCC has raised concerns about the risks to
children during lockdown.

0.45 But while countries from Latin America to
Europe are now ordering batches of Sputnik,
the rollout in Russia itself has been slow, as
people prove deeply reluctant to be injected.

0.04 Jones was found guilty of fatally shooting Mr.
Howell, as insurance executive, during a 1999
carjacking on his driveway.

Table 1: Examples of sentences from News-2 with
their subjectivity levels: higher subjectivity scores cor-
respond to higher subjectivity level within text.

timent analysis) benefit from successfully detecting
subjectivity in text.

Most studies focus on identifying subjectivity
within three scopes: Document-level, sentence-
level, and aspect-level. While document-level and
sentence-level tasks differ in the length of their tex-
tual input, aspect-based subjectivity analysis aims
to identify opinions toward specific aspects in a par-
ticular sequence. In this study, we focus on detect-
ing subjective clues in text within sentences. This
aligns perfectly with our broader goal of analyzing
news articles to identify potential techniques for
manipulating readers’ interpretations of reported
events.

One of the main challenges for learning subjec-
tive language arises from the nature of the task.
Subjectivity exists on a spectrum, where sentences
at the extreme ends are easier to categorize, but
as you move towards the center, it becomes in-
creasingly challenging and reliant on personal in-
terpretation to assign a single label due to the
nuanced blend of perspectives (see Table 1). In
most existing datasets, finding the ground truth on
sentence subjectivity is done via majority voting
among a group of annotators. However, this could
lead to extremely noisy labels due to the low inter-
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annotator agreement (Davani et al., 2022). Humans
often disagree in their assessment of controversial
topics due to a variety of reasons such as socio-
demographic factors, political stance, environment,
and culture (Luo et al., 2020).

Despite language models’ strong performance
on various benchmarks, they still lack human-level
performance in semantics-related tasks. While fine-
tuning a language model on a specific dataset/task
could lead to a higher score for that particular
dataset/task, it often does not generalize well out-
side of the training distribution.

Online news articles exhibit a range of writing
styles, word choices, and sentence structures. This
diversity creates a challenge for model robustness.
As large pre-trained language models are trained
on huge data collections from a wide range of text
distributions, they perform relatively robustly when
confronted with different datasets, making them
a useful tool for our problem. In this work, we
investigate how three different language models
detect subjectivity in the news domain and where
they fail. Our main research questions are:

RQ1. To what extent does fine-tuning a language
model like BERT generalize to out-of-distribution
data from the news domain?
RQ2. How well do pre-trained state-of-the-art
large language models such as GPT-3.5, GPT-4,
and Gemini detect subjectivity in news?
RQ3. How can we improve LLM performance
using different prompting methods?

This work contributes empirical studies and in-
sights about the efficacy of language models in
detecting subjectivity in news and addressing gen-
eralization challenges. We propose and evaluate
prompting methods to enhance the performance of
LLMs at detecting subjectivity in news.

2 Related Work

Subjectivity Analysis. Various methodologies
have been explored for subjectivity analysis. Early
work on fine-grained subjectivity detection focused
on developing subjectivity lexicons and develop-
ing hand-crafted rules to learn subjectivity clues
and opinion-bearing terms in sentences (Yu and
Hatzivassiloglou, 2003; Gordon et al., 2003; Riloff
et al., 2005; Riloff and Wiebe, 2003; Kim and
Hovy, 2005). These methods, while simple, of-
ten struggle with nuanced expressions and lack
generalizability. As machine learning techniques
matured, SVMs, Naive Bayes classifiers, and deci-

sion tree classifiers emerged as prominent choices.
These models leverage features like n-grams, Part-
of-speech tags, and syntactic structures for classifi-
cation, demonstrating improved performance and
flexibility (Harb et al., 2008; Goldberg and Zhu,
2006; Zhang et al., 2007). With the advent of deep
learning, RNNs and LSTMs gained significant at-
tention due to their capability to capture intricate
contextual dependencies in textual data (Irsoy and
Cardie, 2014). However, recent advancements in
language models and transfer learning reshaped
the field. Transfer learning, in particular, allows
pre-training models on massive corpora to learn a
general representation of words and expressions.
Followed by fine-tuning, models can outperform
all the previous feature-based and lexicon-based
techniques.

In-Context Learning. In-context learning refers
to a situation where a frozen language model per-
forms a task by only conditioning on the prompt
task. A study by McCann et al. (2018) is a foun-
dational framework for the concept of in-context
learning, where multiple NLP tasks are treated as a
unified question-answering problem. In addition,
the first GPT paper (Radford et al., 2018) paved
the way with some tentative prompt-based exper-
iments with the model. However, it was not until
GPT-3 (Brown et al., 2020) that the full potential
of in-context learning was realized. The seminal
GPT-3 paper demonstrates the unprecedented ca-
pability of large-scale language models to perform
various NLP tasks with minimal task-specific fine-
tuning, relying solely on the context provided in
the prompt. With the scaling of the model size
and data size, large language models demonstrate
in-context learning (Dong et al., 2022; Chowdhery
et al., 2023). As in-context learning provides in-
terpretable ways for communicating with LLMs,
its performance is sensitive to many factors in the
prompt, such as the order of examples, length of
the examples, and the semantic similarity of the
examples to the test set. (Dong et al., 2022; Wang
et al., 2023; Zhao et al., 2021; Min et al., 2022).
This work evaluates LLMs for subjectivity detec-
tion and explores prompting methods for improving
generalizability.

3 Datasets

We use multiple datasets to ensure the generaliz-
ability of our approach outside of the training do-
main: MPQA, a classic dataset in the subjectivity
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domain Wiebe et al. (2005) and two recently intro-
duced datasets consisting of subjective sentences in
the news domain. One of the news datasets (News-
1) is focused on political news (Antici et al., 2023);
the second dataset (News-2) is focused on crime
and COVID-19 Savinova and Del Prado (2023).
This diversity in news topics provides a distribution
shift within the news domain in our experiments.

MPQA. The MPQA (Multi-Perspective Ques-
tion Answering) dataset Wiebe et al. (2005) is a
significant dataset in sentiment analysis and opin-
ion mining research. This dataset is designed to ad-
dress the multifaceted nature of subjective language
and offers a diverse collection of text segments
annotated with sentiment polarity and subjectiv-
ity information. It comprises a variety of sources,
including news articles, product reviews, discus-
sion forums, and social media posts, and reflects
the varied contexts in which subjective expressions
manifest. To exclude variability across text gen-
res, we only include the MPQA sentences from
news articles in our experiments. We work with
MPQA opinion corpus version three. After pre-
processing steps and removing sentences with less
than 5 words, we are left with 1,707 sentences, 954
subjective and 753 objective.

News-1. We use a recently introduced News
dataset (Antici et al., 2023), a collection of sub-
jective and objective sentences extracted from 8
different online political news outlets. This dataset
focuses on controversial political topics such as
civil rights, politics, law, and economics. We refer
to this dataset as "News-1". It consists of 1049
sentences extracted from 23 news articles, out of
which 638 are labeled objective and 411 are labeled
subjective.

News-2. Our third dataset is collected by Savi-
nova and Del Prado (2023). This dataset contains
sentences from news articles and Facebook posts
about "crime" and "COVID-19" published by four
major UK news sources with a total size of 7,751
sentences. We filter out the Facebook posts since
they are shorter and possibly not written by jour-
nalists. Hence, all our experiments throughout the
paper are carried out using only news sentences
with a total count of 2,973 sentences containing
1013 subjective sentences and 1960 objective sen-
tences. An important characteristic of this dataset
is that its labels are continuous numbers in the
range [0, 1], with 1 being the most subjective and
0 being the most objective. The annotators are in-
structed to evaluate the sentence subjectivity on a

7-point scale, and they set the mean as the final
label. A portion of the dataset is manually labeled
and the rest is labeled with the model trained on
the manually-labeled set. We refer to this dataset
as "News-2" in the rest of this paper. Several ex-
amples from the News-2 dataset are presented in
Table 1.

4 Methods

4.1 Lexical Features

We first examine the linguistic features that are
traditionally used for distinguishing subjective lan-
guage from objective language. We select lexi-
cal features helpful to distinguish the subjective
language in news articles from mere news report-
ing (Krüger et al., 2017) and add 9 lexical richness
features (McCarthy and Jarvis, 2007) to form our
linguistic features set for this study. The features
from Krüger et al. (2017)’s study are claimed to
be robust against change in topic and domain and
we explore their effectiveness in this our study. We
train a logistic regression model with these features
to establish our baseline.

4.2 Fine-tuning

First, we study how fine-tuning a language model
like BERT helps generalize to out-of-distribution
data from the news domain. We fine-tune several
popular language models to asses the adaptability
of each for our datasets (Section 5.2). A problem
often associated with fine-tuning is over-fitting: the
model adapts to the training dataset and cannot
generalize to out-of-distribution data. However, as
the goal of our study is to design a system that
can be used in real-time, it is expected to run on
data from different distributions than the training
data distribution. Hence, we analyze how well a
model trained on each dataset generalizes to the
other two datasets. We fine-tune a model on each
of our datasets and test on the remaining pair as
out-of-distribution data (OOD).

4.3 Re-formulating the task

Next, we examine the effect of re-formulating the
problem as an entailment task (Section 5.3). As
demonstrated by Wang et al. (2021), language mod-
els become better few-shot learners as they bene-
fit from transforming the classification problem
into a language entailment task. Therefore, we
transformed the problem into a language entail-
ment problem. We convert the sentences in all
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three of our datasets into pairs of hypotheses and
premises and use a RoBERTa-large model for en-
tailment classification. The RoBERTa model is al-
ready trained on the MNLI dataset (Williams et al.,
2017), so it has learned whether a sentence (hy-
pothesis) entails another sentence (premise). We
additionally train it on a small set of the MPQA
dataset which has high-quality labels to teach the
model the specifics of our task.

4.4 In-Context Learning

In-context learning has become an increasingly
popular paradigm for adapting large language mod-
els to different tasks (Brown et al., 2020; Kojima
et al., 2022). To answer how well the pre-trained
state-of-the-art large language models such as GPT-
3.5, GPT-4, and Gemini detect subjectivity in the
news domain, we examine three large pre-trained
language models in both zero-shot and few-shot set-
tings and study how different prompting strategies
affect in-context learning performance. We work
with Google’s Gemini (Team et al., 2023), GPT-
3.5-turbo (Brown et al., 2020), and GPT-4 (Bubeck
et al., 2023). We access Gemini through Vertex
AI API, GPT models through Openai API, and the
RoBERTa model through Hugging Face Hub. As
few-shot examples in the prompt teach the model
the nuances of the task, models demonstrate high
sensitivity to the training examples in the prompt.
Mitigating this issue requires manual inspection for
high-quality relevant examples. Hence, we address
research question 3: how could we improve LLM
performance using different prompting methods?
We examine more general prompting strategies to
explain the task and reasoning process to the model
without relying on hand-picked examples.

5 Experiments

5.1 Baseline

As our baseline, we use a logistic regression model
with 36 linguistic features. We train a logistic
regression separately on each dataset and test it
on the remaining two datasets. Table 2 presents
macro average scores for the logistic regression
model across the three datasets. We compute scores
for (1) training and testing within the dataset; and
(2) using one of the datasets for training and the
other two datasets for testing. The Logistic Regres-
sion model trained on the MPQA dataset yields the
highest score on out-of-distribution data (OOD),
exhibiting the highest out-of-distribution general-

ization. Although the logistic regression model
does not achieve high scores, it provides a great
deal of interpretability and one can easily figure
out what features contributed to the model’s predic-
tions. This could be done by analyzing the largest
coefficients of the model or by using SHAP values
(Lundberg and Lee, 2017) to explain every predic-
tion and quantify the feature contributions.

Result Logistic Regression (Baseline)
for trained on trained on trained on
Dataset MPQA News-1 News-2
MPQA 0.54 0.30 0.34
News-1 0.50 0.39 0.44
News-2 0.42 0.48 0.65
OOD Avg 0.46 0.39 0.39

BERT FT
MPQA 0.86 0.38 0.53
News-1 0.62 0.79 0.65
News-2 0.66 0.65 0.90
OOD Avg 0.64 0.51 0.59

Table 2: Classification results for the baseline (Logistic
Regression) and BERT FT. For each column, OOD avg
is the average of the two rows corresponding to out-of-
distribution data.

5.2 Fine-Tuning

We fine-tune several pre-trained language models:
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), and Llama-2 (Touvron et al., 2023) on each
dataset separately to compare performance with
zero-shot and few-shot learners. We tune the hyper-
parameters for each model using grid search and
save the best model based on the validation set eval-
uation. As expected, fine-tuning achieves high F-1
scores for every dataset as the model fully adapts
to the training dataset. These results are presented
in Table 3. In addition, we run the best model
for each dataset on the two other datasets to mea-
sure its OOD generalization. Although fine-tuning
achieves high F-1 scores for every dataset, its per-
formance drops significantly when tested on OOD
data points. Therefore, with the current size and
state of available datasets, fine-tuning does not of-
fer a robust solution for classifying subjectivity.
Table 2 shows that BERT trained on either of the
news datasets has OOD generalization power com-
parable to the logistic regression model trained on
MPQA.

5.3 Reformulating as Entailment

We use the RoBERTa-Large model trained on the
MNLI dataset from the Hugging Face Hub. The
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Dataset Baseline BERT Llama-2 RoBERTa-
L

MPQA 0.54 0.86 0.77 0.82
News-1 0.65 0.79 0.72 0.76
News-2 0.39 0.90 0.69 0.87

Table 3: Fine-tuned models on each dataset. Baseline
is a logistic regression model trained on lexical and
syntactic features.

model has learned to classify a hypothesis sentence
as entailing, contradicting, or neutral towards a
premise sentence. We train the model on 20 sen-
tences from the MPQA dataset to further adapt it
for the task. For every sentence S1 in the datasets,
we add a premise sentence, S2 = "This sentence
is Subjective". Every entail label is translated to
subjective, and every contradict label is translated
to objective. We feed the model < S1, S2 > pairs
from each dataset. The results are shown in Table 4.

Dataset Models
RoBERTa MNLI* RoBERTa MNLI trained on MPQA

MPQA 0.43 0.86
News-1 0.38 0.66
News-2 0.36 0.72

Table 4: RoBERTa-MNLI* model has been fine-tuned on 20
examples from MPQA dataset to learn the structure of the task,
outputting only ’entail’ or ’not entail’ without considering
’neutral’ for any sentence.

After training on the MPQA dataset, the
RoBERTa model performs well on the News-1 and
News-2 datasets. Its out-of-distribution (OOD) gen-
eralization outperforms the best BERT model fine-
tuned on MPQA from Section 5.2 and the logistic
regression models’ OOD generalization. However,
to evaluate its capabilities in a zero-shot setting, we
train the model on 20 sentences from the MPQA
dataset to further teach it our task. When tested on
new data, it does not perform well.

5.4 Zero-Shot Inference

In this section, we describe our experiments with
four large language models. In the Zero-shot set-
ting, we prompt the language models to assess the
subjectivity of the test sentences without giving
them any examples (see Table 9). We use a tem-
perature value of 0 for all our experiments with all
three models. We also test the RoBERTa-MNLI
model in the zero-shot setting, as explained above
in Section 4.3.

As displayed in Table 5, the three large language

Dataset
Zero-Shot Models

GPT-3.5 GPT-4 Gemini RoBERTa MNLI

MPQA 0.68 0.77 0.62 -

News-1 0.68 0.62 0.71 0.38

News-2 0.78 0.74 0.73 0.36

Average 0.71 0.71 0.69 0.39

Table 5: LLM’s macro f1 score in zero-shot setting on
each dataset. As RoBERTa-MNLI is fine-tuned on 20
sentences from MPQA, its score on MPQA test set is
not considered under a Zero-shot test setting.

models vary in their performance across different
datasets, but on average across all datasets, GPT-
3.5 and GPT-4 score slightly higher than Gemini.
Further, compared to the previous sections, the
models show more robust performance across all
datasets, reducing the gap between best and worst
scores.
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Figure 1: The left graph presents the scores with random
seed set to 42; the right graph presents the scores with
random seed set to 100.

5.5 Few-Shot In Context Learning
In Section 5.4, we showed that LLMs perform well
and robustly in zero-shot settings without seeing
any examples from the target text distribution. To
answer RQ3, we investigate whether different sam-
pling strategies for in-context learning examples
can increase performance. We experiment with
varying factors in the prompts and evaluate the
impact of each factor on performance. The vari-
ants include the number of ICL examples in the
prompt, the random seed for sampling sentences
from the data, the subjective-to-objective ratio in
ICL examples in the prompt, and the dataset from
which we draw the ICL examples to account for
in-distribution and OOD sentences. In Table 6,
we report the average macro F1 scores over five
experiments for each set of variants.

Count of ICL Examples. The first factor we
study is the count of example sentences in the
prompt. As previously proven in supervised ma-
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chine learning, more labeled data could lead to
better performance. However, this does not seem
to be true with ICL examples (Min et al., 2022).
We use a fixed random seed for sampling sentences
from our datasets. We test the model with prompts
containing {4, 8, 12, 16, 20, 30, 40, 50, 60} ICL
examples. For each test, we add new sentences
to the previously existing ones; for example, the
8-ICL examples prompt adds 4 new sentences to
the 4-ICL examples prompt, and so on. Similar
to Min et al. (2022)’s findings, we do not see any
clear increasing trend in performance with a higher
number of examples (Figure 1). Moreover, the best
performance is achieved with fewer than 20 labeled
examples. Figure 1 shows that the choice of ran-
dom seed can substantially affect performance.

Input Data Distribution. An intuitive assump-
tion is that using in-distribution-data in the prompt
should help the model conditioning on the input
reach better performance. However, unlike to Min
et al. (2022), we observe that in many cases, sam-
pling from OOD data outperforms a prompt with in-
distribution training examples. This finding aligns
with the rest of their findings, in that the model
learns more information about the task and the
input-output structure than the data itself. In addi-
tion, their work shows that assigning random labels
to input sentences does not hurt performance, sug-
gesting that the model does not learn substantial
information about the data. Furthermore, we ob-
serve that sampling equally from all three datasets
performs competitively in k = 12 ICL examples,
however, we can not hypothesize more generally
due to the limited number of experiments.

Subjective to Objective Ratio. To learn the
effect of the majority labels on the performance,
we set up several experiments where we changed
the subjective-objective ratio in ICL examples. Un-
like (Zhao et al., 2021) we do not observe a strong
correlation between majority labels and the model’s
predictions. As shown in Figure 2, two out of
three of our experiments suggest that increasing
the subjective-objective ratio in training examples
marginally hurts the performance.

5.6 Chain of Thought Prompting
Due to the instability and unpredictability of stan-
dard few-shot in context learning, we switch to
Chain of Thought prompting (Wei et al., 2022) ex-
pecting higher performance and stability. Standard
few-shot prompting has shown promising results in
many tasks, except for the tasks that require reason-
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Figure 2: Changing the ratio of subjective to objective
sentences in the 12-example prompt.

ing. With Chain of Thought (CoT) prompting, we
break down the task into smaller steps, which the
model is more likely to solve, hence teaching the
model to reason about the task the same as how hu-
mans do. This method requires manual task-aware
examples curated by experts in the prompt. How-
ever, it has been demonstrated Kojima et al. (2022)
that one can bypass that step and require the model
to think step by step and achieve competitive re-
sults with standard CoT prompts. This approach,
called Zero-shot Chain of Thought, is task-agnostic
and comparatively simple to implement. We ex-
tend this method by adding instructions for classi-
fying our sentences in Figure 3. We do not provide
any examples for the model but explain a general
framework for classifying sentences as subjective
or objective based on the annotation scheme done
by Wiebe et al. (2005). We refer to this prompting
method by ZCoT-Inst in the rest of this paper. Ta-
ble 6 depicts our results for each prompting strategy.
In all three models, ZCoT-Inst leads to best average
performance across all datasets. We also observed
that the biggest gain of standard CoT prompting
happens for the MPQA dataset, which might be due
to the reason that our chain of thought instructions
aligns well with MPQA’s annotation procedure.
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Classify the following sentence into subjective or objective.

Sentence: {}

Answer: Let’s think step by step!

First, find phrases that express opinions, personal views, or emotions.
Second, find how intensely each phrase expresses opinions, personal views, 
or emotions.
Third, if there is one or more such phrases with an intensity medium or 
higher, classify the sentence as subjective.

a)

b)

Classify the following sentence into subjective or objective.
Sentence: {}

Answer: 

Figure 3: (a) Zero-Shot prompt (b) Zero-Shot CoT
prompt with manual instructions.

The results in Table 6 indicate that the Chain of
Thought prompting does not work well on GPT-3.5
as it scores higher with standard zero-shot prompts
(see Table 5. This could be because reasoning abil-
ities increase with model size. Comparing Table
5 and Table 6 shows that even though the highest
score for News-1 and News-2 is achieved with zero-
shot prompting, the highest score for MPQA is
achieved with GPT-4 with ZCoT-Inst prompt. The
highest average score across all three datasets is
achieved by GPT-4 with ZCot-Inst prompt, which
gains a 2.3% increase compared to the Zero-shot
setting. This demonstrates the efficacy of our
method and effectively addresses RQ3.

5.7 Ensemble Model
Next, we explore an ensemble of our three large
language models. We feed every sentence to each
of our models while prompting them to just output
the final label. For each sentence, we get three
predictions by the models and we use the major-
ity vote as the final verdict. We test the ensemble
model in a Zero-shot setting(all three models are
given the same zero-shot prompt) and with a CoT
prompt(all three models are given the same CoT
prompt). In addition, we also run an ensemble
model of the three prompting strategies (Zero-shot,
ZCoT-Inst, and Zero-shot CoT) and we refer to it
by all-prompts. All-prompts setting is an ensem-
ble of 9 different predictions (3 prompt settings for
each model) and we use the majority vote as the
final verdict. Table 7 summarizes the results. The
ensemble model with a Zero-shot prompt achieves
the highest scores on News-1 and News-2 datasets
among all the non-fine-tuned models in our experi-
ments. The All-prompts setting achieves the high-
est average score of all our experiments. However,
it is less practical than the other settings because
it captures each model’s predictions under three

Dataset Prompting Methods
Zero-Shot CoT ZCoT-Inst Standard CoT

MPQA 0.70 0.69 0.76
News-1 0.65 0.67 0.59
News-2 0.73 0.73 0.68
Average 0.693 0.696 0.676
(a) GPT-3.5 average macro F-1 scores over 3 runs.

Dataset Prompting Methods
Zero-Shot CoT ZCoT-Inst Standard CoT

MPQA 0.76 0.80 0.75
News-1 0.66 0.67 0.55
News-2 0.77 0.73 0.66
Average 0.73 0.733 0.653
(b) GPT-4 average macro F-1 scores over 3 runs.

Dataset Prompting Methods
Zero-Shot CoT ZCoT-Inst Standard CoT

MPQA 0.67 0.73 0.76
News-1 0.69 0.72 0.60
News-2 0.73 0.74 0.70
Average 0.696 0.73 0.686

(c) Gemini average macro F-1 scores over 3 runs.

Table 6: Comparison of (a) GPT-3.5 and (b) GPT-4
and (c) Gemini average macro F-1 scores on different
datasets.

different prompting settings.

Dataset Ensemble Model
Zero-Shot Zero-Shot CoT ZCoT-Inst All-prompts

MPQA 0.70 0.75 0.75 0.76
News-2 0.80 0.75 0.76 0.78
News-1 0.72 0.67 0.72 0.70
Average 0.74 0.723 0.743 0.746

Table 7: Ensemble model performance on three datasets.

6 Error Analysis

In this section, we analyze false negatives and false
positives predicted by the best model from the pre-
vious section. As discussed in Section 5.6, ZCoT-
Inst outperforms all the other prompting techniques
across all models. Therefore, the analysis in this
section is with regard to the models’ prediction
in that setting. We look at the predictions by the
models for test sets in each dataset. There are 220
sentences in the MPQA test set, 219 sentences in
the News-1 test set, and 298 sentences in the News-
2 test set.

Table 8 summarizes the classification results of
the models on each of our datasets. GPT-4 gener-
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Figure 4: False objective and false subjective prediction
counts by each model.

Model
MPQA News-1 News-2

Subjective Objective Subjective Objective Subjective Objective
P / R P / R P / R P / R P / R P / R

GPT-3.5 0.94 / 0.50 0.60 / 0.94 0.67 / 0.77 0.72 / 0.59 0.74 / 0.53 0.78 / 0.90
GPT-4 0.83 / 0.84 0.79 / 0.77 0.62 / 0.96 0.90 / 0.36 0.61 / 0.74 0.84 / 0.74
Gemini 0.93 / 0.51 0.60 / 0.94 0.70 / 0.83 0.78 / 0.60 0.76 / 0.54 0.78 / 0.91

Table 8: Precision (P) and Recall (R) for Different mod-
els and datasets.

ally has a higher recall for subjective class com-
pared to the other models. Gemini and GPT-3.5
exhibit similar behavior across all three datasets
with generally higher precision and lower recall
in subjective class compared to GPT-4. These dif-
ferences might justify the advantage of the ensem-
ble model as compared to the individual models.
Figure 4 demonstrates the counts of false subjec-
tive (sentences annotated as ’objective’), and false
objective (sentences annotated as ’subjective’), in-
stances across each model within every dataset.

Sentiment. We analyze the misclassified sen-
tences and assess positive and negative senti-
ment patterns across datasets using the RoBERTa-
based sentiment analysis model trained on
tweets (Loureiro et al., 2022). We aim to inspect if
the models struggle with sentences carrying strong
sentiments (positive or negative), which intuitively
should be easier to identify. First, we run the senti-
ment analysis model on every sentence in all three
of our datasets, to understand their sentiment dis-
tribution. Figure 5 summarizes the information. In
general, subjective sentences in all three datasets,
range from high positive to high negative sentiment
with more than half of the instances carrying neu-
tral or negative sentiment. This is the case for objec-
tive sentences in both News-1 and News-2 datasets,
whereas MPQA’s objective sentences mostly con-

tain neutral sentences which could speak for the
distribution shift among the datasets.
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Figure 5: Sentiment scores across subjective and ob-
jective sentences in each dataset. [-1,0) in the y axis
represents negative sentiment, [0-1] represents neutral
sentiment, and(1,2] represents positive sentiment.
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Figure 6: Different models sentiment score across false
subjective and false objective sets.

Next, we proceed to examine the sentiment
scores of false subjective and false objective sen-
tences predicted by all three models. Similar to the
previous analyses for general classification reports
of the models, Gemini and GPT-3.5 exhibit very
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Figure 7: False objective instances in each model versus
subjective sentences in MPQA dataset.co

similar behavior in their false predictions across all
three datasets. Their false predictions only slightly
differ in mean sentiment scores, whereas GPT-4’s
false predictions tend to have higher mean sen-
timent scores across all datasets. GPT-4’s false
subjective set seems to be shifted more towards
neutral sentiment as its having higher scores for
mean and median. However, GPT-4’s false objec-
tive prediction sets are quite different than other
models in terms of sentiment. In contrast to Gem-
ini and GPT-3.5, it is noticeable that for all three
datasets, GPT-4’s false objective predictions mainly
lay in the neutral zone of the sentiment graph. This
might signal that a model can detect easier subjec-
tive signs, such as high-sentiment words, and fails
to detect subjectivity in neutral sentences. Another
reason could be due to the inductive bias of the
prompt (Figure 3) that relies on the sentiment of
extracted subjective terms.

Opinion Holders. According to our initial ex-
amination of false objective sentences, none of the
instances have obvious, significant clues of subjec-
tivity. Therefore, classifying these sentences cor-
rectly requires identifying nested opinion holders
in them. We examine the misclassified sentences
of each model on the MPQA dataset, as MPQA
has fine-grained annotations for subjective terms
and their nested sources (opinion holders) in ev-
ery sentence. The source of a subjective frame is
defined as the person or entity that is expressing
the opinion. Consider the following example from
Wiebe et al. (2005) work on annotating subjective
texts:

"China criticized the U.S. report’s criti-
cism of China’s human rights record."

In the sentence above, the U.S. report’s criticism
is the target of China’s criticism. Thus, the nested
source for criticism is <writer, China, U.S. report>,
as writer of the text is a default source of subjectiv-
ity in all written texts. Hence, the sentence above
has 4 nested sources. Figure 7 summarizes our find-
ings: both Gemini and GPT-3 fail in adhering to
the original distribution of nested opinion holders.
However, GPT-4 diverges from this trend, primar-
ily failing in statements containing three nested
opinion holders.

7 Conclusion

In this work, we investigate how language mod-
els learn and classify subjective language across
three different datasets from the news domains. We
examine how well different models generalize to
out-of-distribution data. In addition, we analyze
how LLMs detect subjective language with differ-
ent prompts. Based on our experiments, we con-
clude that the standard in-context learning does not
guarantee robust classification as it introduces a
great deal of sensitivity to the examples provided
in the prompt. In future work, we plan to inves-
tigate how different prompting techniques, such
as explaining how to detect potentially subjective
terms and analyzing sentiment intensity, can lead
to better, more robust performance across different
datasets.

Limitations

There are several algorithms for domain adaptation
when the source and target data distributions are
known, such as sample re-weighting. There also
exist algorithms for cases when the target distri-
bution is unknown, usually referred to as domain-
generalization. In our study we mainly focused on
fine-tuning and did not explore domain generaliza-
tion algorithms for our smaller models.
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A Additional Experimental Details

A.1 Prompts

Here we provide more details about the prompts
used in our experiments to make models predict the
subjectivity of our test datasets. Table 9 presents all
four prompts that we used in our experiments. As
seen in the table, models prompted with standard
CoT and Zero-shot CoT with instructions, generate
longer answers required post-processing to extract
the final label. To extract the final answer from the
longer answers, we feed the answer to a Gemini
model and prompt it to extract the final label from
the answer.

Prompt
Name

Prompt Text

Zero-shot Classify the following sentence into Subjec-
tive or Objective. Just output the label.
Sentence: {} Label:

Zero-shot
CoT

Classify the following sentences into Sub-
jective or Objective. Let’s think step by
step.
Sentence: {} Label:

ZCoT-Inst Classify the following sentence into Subjec-
tive or Objective. output reasoning for each
step.
Sentence: {}
Answer: Lets think step by step!
First, find phrases that might express opin-
ions or personal views.
Second, find out how intense each phrase is
expressing opinions or personal views.
Third, if there is one or more phrases with
expression intensity medium or above, clas-
sify the sentence as Subjective.

Standard
CoT

Classify the Sentence into Subjective or
Objective.

Sentence: Meanwhile, some other coun-
tries, including Japan and Germany, al-
ready issued statements on Bush’s new cli-
mate change policy in rather different tones.
Answer: First, the phrases that might ex-
press opinions or personal views are ’rather
different’. The expression intensity of the
phrase is medium. Since there is one
or more phrases with expression intensity
medium or above, classify the sentence as
Subjective.
Sentence: {} Answer:

Table 9: Different prompt used in our experiments. We
only include one example for standard CoT for demon-
stration purposes, but our experiments are done with 6
examples in standard CoT prompt setting.

A.2 Logistic Regression Features

Here we list the features used for training a logistic
regression model as our baseline. The features
were taken from the work by Krüger et al. (2017).

The set of features are claimed to be robust for
classifying opinion vs news report.

Feature Description
SentLength sentence length measured in tokens (inverted)
TokenLength Avg. token length measured in characters (inverted)
Negation Norm. frequency of lemmatized negation words
NegationSuffix Norm. frequency of negation suffix n’t
Complexity Norm. frequency of finite verbs per sentence
Questions Ratio of question marks
Exclamations Ratio of exclamation marks
Commas Ratio of commas
Semicolons Ratio of semicolons
Temporal
Conn.

Ratio of temporal connectives

Causal Conn. Ratio of causal connectives
Contrastive
Conn.

Ratio of contrastive connectives

Expansive
Conn.

Ratio of expansive connectives

Citations Ratio of citations
CitationLength Avg. number of tokens per citation
Past Ratio of past tense outside quotes
Present Ratio of present tense outside quotes
VoS Ratio of lemmatised communication verbs outside quotes
Modals Ratio of lemmatised modal verbs outside quotes
Future: Will Ratio of verb ‘will’ outside quotes
1st person Norm. frequency of 1st person pronouns outside quotes
2nd person Norm. frequency of 2nd person pronouns outside quotes
1st/2nd person Norm. frequency of 1st and 2nd person pronouns outside quotes
Digits Norm. frequency of digits
Interjections Norm. frequency of interjections
Sentiment Norm. text polarity outside quotes
Sentiment Adj Norm. text polarity outside quotes in adjectives only

Table 10: Features and Descriptions

We supplement the above list of features with
9 lexical richness features from lexicalrichness
python library. These form the set of 36 features
that we use to train a logistic regression model.
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