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Abstract

This paper explores the task of automatic pre-
diction of text spans in a legal problem descrip-
tion that support a legal area label. We use
a corpus of problem descriptions written by
laypeople in English that is annotated by prac-
tising lawyers. Inherent subjectivity exists in
our task because legal area categorisation is a
complex task, and lawyers often have different
views on a problem, especially in the face of
legally-imprecise descriptions of issues. Ex-
periments show that training on majority-voted
spans outperforms training on disaggregated
ones.1

1 Introduction

Automatic categorisation of lay descriptions of
problems into relevant legal areas is of critical im-
portance for providers of free legal assistance (Mist-
ica et al., 2021). In our case, we have access
to a dataset where a legal problem description is
annotated by multiple lawyers who first perform
document-level annotation by choosing relevant le-
gal areas,2 and then, for each legal area chosen, the
lawyers highlight text spans that support their deci-
sion. These spans not only help justify the selected
areas of law but also improve the interpretability of
their decision.

The categorisation of legal areas is a complex
problem, and lawyers sometimes have different
views on a problem, especially when the task is
performed on legally-imprecise descriptions of the
personal circumstances of an individual. There-
fore, subjectivity is inherent in our task. This sub-
jectivity leads to annotation disagreements, both
at the document- and the span-level. While such
disagreements are often seen as noise that needs

1Code is available at https://github.com/kmkurn/
wassa2024.

2There are 32 possible legal areas including NEIGHBOUR-
HOOD DISPUTES, ELDER LAW, and HOUSING AND RESI-
DENTIAL TENANCIES.

Area of law Annotated description

ELDER LAW I was admitted in a Public Hospi-
tal. I want the right to go home,
NOT aged care!

GUARDIANSHIP AND
ADMINISTRATION

I was admitted in
a Public Hospital. I want

the right to go home,
NOT aged care!

Table 1: Examples of a description annotated with spans
for two different areas of law.

to be eliminated in data annotation (Plank, 2022),
here they are signal because they are produced by
subject-matter experts.

In this paper, we explore the task of automatic
span prediction using our expert-annotated dataset,
as illustrated in Table 1. Given a problem descrip-
tion (which is a short document) and an area of law,
the task aims to predict text spans in the description
that support the area of law label. We describe the
development of machine learning models for the
task that are trained on a corpus containing legal
problem descriptions written by laypeople in En-
glish. Across various evaluation scenarios, we find
that aggregating training span annotations outper-
forms keeping them disaggregated.

2 Problem Statement

Given a text expressed as a sequence of N words
x = x1x2 . . . xN and a label l, the goal is to predict
a set of non-overlapping spans S = {(bi, ei)}Mi=1

where 1 ≤ bi ≤ ei ≤ N such that the text seg-
ments {xbixbi+1 . . . xei}Mi=1 explain the reason for
assigning l to x. In other words, bi and ei respec-
tively denote the beginning and the end indices
of the i-th span supporting the assignment of l to
x. We cast the problem as sequence tagging by
modelling the probability of S given x and l as

P (S | x, l) ∝ exp f(x,y, l) (1)
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where y = y1y2 . . . yN is a sequence of N tags
representing the spans in S, each yi corresponds to
xi, and f is a real-valued function that measures
the relevance of y in supporting the assignment
of l to x. To get y from S, we use an encoding
where yi takes one of 5 possibilities depending on
the position of i in a span (Sekine et al., 1998):

1. singleton, if ∃(b, e) ∈ S where b = e = i;
2. beginning, if ∃(b, e) ∈ S where b = i < e;
3. end, if ∃(b, e) ∈ S where b < i = e;
4. inside, if ∃(b, e) ∈ S where b < i < e; and
5. outside, otherwise.

The span prediction problem is then equivalent to
finding the highest scoring sequence

y⋆ = argmax
y

f(x,y, l).

The sequence y⋆ is then decoded to get the final
predicted spans.

3 Corpus

The corpus was collected by Justice Connect,3 an
Australian public benevolent institution4 that con-
nects laypeople seeking legal assistance with pro
bono lawyers. On its website, Justice Connect al-
lows help-seekers to describe their problem in free
text format in English. After anonymising identi-
fiable information, problem descriptions collected
from July 2020 to early December 2023 were pre-
sented to a pool of lawyers to be annotated. Each
annotator selected one or more out of the 32 ar-
eas of law that applied to the problem (thus it is
a multi-label classification problem), representing
the different law specialisations the case relates
to. On average, a problem description is labelled
with 3 areas of law. For each document-level area
of law selected, the annotator then select spans of
words5 that support their decision. On average,
each problem description is annotated by 5 lawyers.
This whole annotation process was carried out by
Justice Connect. In other words, we do not per-
form any additional annotation and simply use the
annotated corpus.

Relating to the problem statement in Section 2,
the description and the area of law form the inputs
x and l respectively, while the spans make up the
output S. Together, the input and the output form

3https://justiceconnect.org.au
4As defined by the Australian govern-

ment: https://www.acnc.gov.au/charity/charities/
4a24f21a-38af-e811-a95e-000d3ad24c60/profile

5The number of words must be at least three.

a labelled example of the task. Following prior
work on a similar corpus (Mistica et al., 2021),
we employ 20-fold cross validation to create the
training and the test sets and randomly take 10% of
the training set to form the development set. Over
the 20 folds we have a total of 35K unique problem
description and legal area pairs, with a total of
3.8M words in the problem descriptions.

4 Method

4.1 Subjectivity-Aware Evaluation
Because of the inherent subjectivity of the labelling
task, a test input (consisting of a problem descrip-
tion and an area of law) can have multiple valid
span annotations whose boundaries may not match
exactly. Specifically for a given problem descrip-
tion, the same area of law can be supported by
different spans. Similarly, the same span can sup-
port different areas of law. To deal with this mis-
matched boundaries issue, we adopt both span- and
word-level evaluation. To address the issue of mul-
tiple valid spans, we experiment with 2 types of
gold spans: majority-voted and best-matched. With
these strategies, we have a total of 4 combinations
of evaluation setup.

4.1.1 Span- and Word-Level Evaluation
In span-level evaluation, a predicted span is consid-
ered correct if it starts from and ends at the same
positions as a gold span. In other words, their span
boundaries must match exactly to be considered
equal.

In contrast, word-level evaluation considers a
word in a predicted span as correct if it is also a
word in a gold span. Put simply, this evaluation
gives a positive score to two overlapping spans
whose boundaries do not match exactly.

We use precision, recall, and F1 scores as eval-
uation metrics. We use the evaluation script6

of CoNLL-2000 chunking shared task (Tjong
Kim Sang and Buchholz, 2000) to perform both
types of evaluation.7

4.1.2 Majority-Voted and Best-Matched Gold
Spans

We perform strict majority voting to get the
majority-voted gold spans for evaluation. For ex-
ample, if there are 2 annotators with the following
span annotations:

6Downloadable from https://www.cnts.ua.ac.be/
conll2000/chunking/output.html.

7Word-level evaluation is achieved by passing -r as option.
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1. [I was fired from work] because of [my com-
plaint against my boss] months ago,

2. I was [fired from work] because of my [com-
plaint against my boss months ago]

where square brackets denote a span, then the gold
spans are fired from work and complaint against
my boss. In other words, only words voted by more
than 50% of the annotators are included. In partic-
ular, words voted by exactly 50% of the annotators
are not included.

Another type of gold spans we experiment with
is the best-matched spans. Given an input and its
predicted spans, best-matched spans of that input
are its span annotations against which the predicted
spans result in the highest F1 score when evalu-
ated. These span annotations must come from a
single annotator. For instance, if (a) there are 2
annotators with the same span annotations as be-
fore, (b) the predicted span is only fired from work,
and (c) span-level F1 is used, then the best-matched
spans are the spans given by the second annotator.
A similar approach has been used in automatic text
summarisation (Lin, 2004).

4.2 Model

We parameterise the function f in Equation (1)
with a neural sequence tagger. The tagger uses
a pretrained language model to provide con-
textual word representations and a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) with
a CRF output layer (Collobert et al., 2011) as the
classifier similar to previous work (Lample et al.,
2016). We use the implementation provided by
the open-source NLP library FLAIR (Akbik et al.,
2019).8

Following prior work on a similar corpus (Mist-
ica et al., 2021), we use the base and uncased ver-
sion of BERT (Devlin et al., 2019) as the pretrained
language model. The problem description and the
area of law are joined and given as a single text
input to BERT. For example, if the problem de-
scription is My landlord kicked me out without rea-
son and the area of law is HOUSING AND RESI-
DENTIAL TENANCIES then the input is My land-
lord kicked me out without reason <sep> HOUS-
ING AND RESIDENTIAL TENANCIES where <sep>
marks the end of the problem description. Both
<sep> and succeeding input words corresponding
to the area of law are excluded from evaluation.

8Version 0.13.

4.3 Training

We experiment with two approaches to dealing
with subjectivity in model training. The first ap-
proach (MV) aggregates span annotations with ma-
jority voting similar to how the majority-voted gold
spans are constructed (Section 4.1). This approach
resolves subjectivity by only including spans on
which the majority of annotators agree.

The second approach is repeated labelling (REL)
which treats multiple annotations of the same input
as separate labelled examples (Sheng et al., 2008).
In other words, annotations in the training set are
left as they are without any attempt to aggregate
them. This approach embraces subjectivity by treat-
ing all annotations equally.

While REL may seem counterintuitive because
the same input can be presented with different an-
notations, these annotations may have consistent
patterns. Spans that are often (resp. rarely) anno-
tated give a strong signal of the presence (resp.
absence) of a true span. We expect that models can
learn the correct spans from these signals.

For both approaches, the tagger is trained for 10
epochs to maximise the probability of the sequence
of tags in the training set. Both learning rate and
batch size are tuned on the development set. The
word-level F1 score against majority-voted spans
is used as the hyperparameter tuning objective.

4.4 Comparisons

Baseline We employ a model that predicts spans
randomly as a baseline (RANDOM) which reflects a
model that does not perform any learning from data.
The model tags each word in the input description
with one out of 3 possibilities uniformly at random:
start of a span, continuation of a span, or outside
of any span. This sequence of tags is then decoded
into a set of spans as the output.

Expert performance The majority-voted gold
spans in Section 4.1 may not resemble spans pro-
duced by a real annotator. Therefore, even an
expert annotator may not achieve perfect perfor-
mance when evaluated against the majority-voted
gold spans. We compute this expert performance
to serve as a more realistic upper bound of model
performance on our dataset. We estimate this per-
formance by evaluating the performance of the best
annotator of each test input, where best is defined
as resulting in the highest F1 score against the
majority-voted gold spans. Note that this is dif-
ferent from the best-matched spans mentioned in
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Section 4.1 because here the gold spans are fixed
to the majority-voted spans while the predicted
spans come from the best annotator. While there
are limitations to this estimation (see Limitations),
we argue that the estimate is still useful as a point
of reference.

5 Results

Table 2 shows that both MV and REL perform
substantially better than RANDOM in terms of F1
scores for all 4 evaluation setups, indicating the po-
tential of both methods. Comparing MV and REL
across both types of gold spans, while the former is
on par with the latter in word-level evaluation, MV
outperforms REL substantially in span-level eval-
uation. This finding is consistent across precision
and recall, and thus demonstrates that MV is over-
all superior to REL. However, the table also shows
that RANDOM outperforms both MV and REL in
terms of word-level recall across both types of gold
spans, which points to an area for improvement.

While the performance numbers with majority-
voted gold spans are lower than the best-matched
counterparts, the patterns of model performance
are consistent across both types of gold spans. This
result suggest that both types of gold spans are
equally acceptable for handling subjectivity in span
annotations. However, using the majority-voted
gold spans has the advantage of time efficiency be-
cause the gold spans do not need to be recomputed
when evaluating different models.

For majority-voted spans, Table 2a shows that
model performance is still far behind expert per-
formance, suggesting that there is still plenty of
room for improvement. Furthermore, the expert
performance is moderately high in span-level eval-
uation and approaches perfect performance in the
word-level counterpart. This finding demonstrates
that the majority-voted spans are realistic as they
show a high degree of similarity to span annota-
tions given by experts.

5.1 Experiments with Other Pretrained
Language Models

We also experiment with an improved version of
BERT known as DeBERTaV3 (He et al., 2023).
Key differences include a more complex model
architecture, a simpler pretraining objective, and
a larger amount of pretraining data. We use the
base version of DeBERTaV3 which has the same
number of layers, attention heads, and hidden units

but four times the vocabulary size of the base ver-
sion of BERT, as used in the previous experiment.
We evaluate only against the majority-voted gold
spans based on the previous findings. Due to time
constraints, we use the hyperparameters (learning
rate and batch size) tuned on the first fold (out of
20) for all the folds of the dataset.

Table 3 shows that both MV and REL outper-
form RANDOM substantially on both span- and
word-level evaluations across all metrics except
for word-level recall where RANDOM achieves the
best score. This finding agrees with that of the
BERT-based models. Looking at F1 scores, the ta-
ble shows that REL is on par with MV in span-level
evaluation and marginally outperforms MV in the
word-level counterpart. This finding contradicts
the results for BERT-based models, suggesting the
effectiveness of REL with improved language mod-
els.

Furthermore, the table shows that for span-level
evaluation, REL outperforms MV in precision but
performs worse than MV in recall. In contrast,
for word-level evaluation, MV outperforms REL
in precision but performs worse than REL in re-
call. These findings suggest that with stronger lan-
guage models, the best method depends not only
on whether span- or word-level evaluation is priori-
tised but also on whether precision or recall is more
crucial. These patterns of performance again con-
tradict those of the BERT-based models, suggesting
that the choice of pretrained language models is
important. We leave the analysis on the possible
reasons behind these findings and the evaluation on
best-matched gold spans for future work.

Lastly, comparing to Table 2a, we see that
DeBERTa-based models outperform the BERT-
based counterparts across the board. This finding
is unsurprising because DeBERTa was developed
as an improvement over BERT (He et al., 2021).

6 Related Work

Pruthi et al. (2020) have studied the span predic-
tion problem under the name of evidence extraction.
However, their model also performs classification
jointly and is trained in a semi-supervised manner.
More importantly, they did not consider subjectiv-
ity in the span annotations. In contrast, we focus
only on predicting spans, supervised learning, and
incorporating subjectivity in model training and
evaluation.

Previous work has leveraged a similar dataset of
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Method
Span Word

P R F1 P R F1

RANDOM 0.2 ± 0.0 4.1 ± 0.1 0.4 ± 0.0 17.1 ± 0.0 66.6 ± 0.0 27.2 ± 0.0
MV 17.9 ± 1.9 18.5 ± 0.3 18.2 ± 1.1 58.2 ± 0.4 48.7 ± 0.1 53.0 ± 0.1
REL 11.2 ± 1.4 12.6 ± 0.3 11.8 ± 0.9 57.5 ± 0.7 48.9 ± 1.2 52.8 ± 0.5

Expert 80.2 67.5 73.3 91.0 97.5 94.2

(a) Majority-voted gold spans

Method
Span Word

P R F1 P R F1

RANDOM 0.0 ± 0.0 1.2 ± 0.0 0.1 ± 0.0 31.0 ± 0.0 66.9 ± 0.0 42.4 ± 0.0
MV 20.9 ± 2.2 26.3 ± 0.4 23.3 ± 1.5 69.2 ± 0.5 48.6 ± 0.2 57.1 ± 0.1
REL 17.1 ± 2.2 24.1 ± 0.5 19.9 ± 1.7 69.6 ± 0.5 48.7 ± 1.2 57.3 ± 0.7

(b) Best-matched gold spans

Table 2: Span- and word-level precision, recall, and F1 scores (in %) of the span prediction model against majority-
voted and best-matched gold spans. Mean (± std) across 3 runs are reported except for Expert.

Method
Span Word

P R F1 P R F1

RANDOM 0.2 ± 0.0 4.1 ± 0.1 0.4 ± 0.0 17.1 ± 0.0 66.6 ± 0.0 27.2 ± 0.0
MV 18.4 ± 1.6 19.7 ± 0.3 19.0 ± 1.0 61.3 ± 0.4 50.2 ± 0.3 55.2 ± 0.0
REL 23.7 ± 2.6 14.8 ± 0.1 18.2 ± 0.8 58.7 ± 0.3 53.0 ± 0.4 55.7 ± 0.2

Table 3: Span- and word-level precision, recall, and F1 scores (in %) of the DeBERTaV3-based model against
majority-voted gold spans. Mean (± std) across 3 runs are reported. RANDOM performance is copied from Table 2a.

legal problem descriptions (Mistica et al., 2021).
They focussed on the text classification aspect
where areas of law are assigned to a problem de-
scription. Different from their work, ours treats the
area of law as given and focusses on predicting the
spans that support the assignment of the area of
law.

Our work falls within the broader theme of
human label variation (Plank, 2022). Previous
work has mainly focussed on text classification
tasks (Leonardelli et al., 2023; Fornaciari et al.,
2021; Nie et al., 2020, inter alia). In contrast, we
focus on spans, which are still understudied in this
area. Our work is also related to data perspec-
tivism.9

7 Conclusion

We explore the task of automatically predicting
text spans in a legal problem description that sup-
port the labelling of an area of law. We develop
neural sequence taggers that deal with the inherent
subjectivity of the task. Experiments across vari-
ous subjectivity-aware evaluation setups show that

9https://pdai.info/

training on majority-voted annotations outperforms
training on the disaggregated counterparts.

Limitations

The dataset we use in this work cannot be released
publicly, which is a major limitation of our work in
terms of reproducibility. This is because the topics
discussed are sensitive, and more importantly, the
help-seekers have not given their consent to share
their data. Nevertheless, we believe our work still
offers valuable scientific knowledge on handling
subjectivity, especially in span annotation tasks.

For the evaluation using majority-voted gold
spans, we estimate the expert performance by deter-
mining the best annotator of each test input. How-
ever, the majority-voted gold spans are a function
of the best annotator’s spans. Thus, the estimated
expert performance is dominated by test inputs that
are annotated by fewer annotators. To mitigate this
issue, a leave-one-annotator-out strategy can be
employed, which we leave for future work.

The best-matched gold spans are likely to come
from various annotators. Taken together, these
spans may not reflect a realistic pattern of a single
human annotator. A remedy is to evaluate against a
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single best annotator. However, this approach is not
straightforward in our case because an annotator
may annotate only a subset of examples. We thus
leave this approach for future work.
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