@inproceedings{osei-brefo-liang-2024-nu,
title = "{NU} at {WASSA} 2024 Empathy and Personality Shared Task: Enhancing Personality Predictions with Knowledge Graphs; A Graphical Neural Network and {L}ight{GBM} Ensemble Approach",
author = "Osei-Brefo, Emmanuel and
Liang, Huizhi",
editor = "De Clercq, Orph{\'e}e and
Barriere, Valentin and
Barnes, Jeremy and
Klinger, Roman and
Sedoc, Jo{\~a}o and
Tafreshi, Shabnam",
booktitle = "Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, {\&} Social Media Analysis",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wassa-1.36",
doi = "10.18653/v1/2024.wassa-1.36",
pages = "412--419",
abstract = "This paper proposes a novel ensemble approach that combines Graph Neural Networks (GNNs) and LightGBM to enhance personality prediction based on the personality Big 5 model. By integrating BERT embeddings from user essays with knowledge graph-derived embeddings, our method accurately captures rich semantic and relational information. Additionally, a special loss function that combines Mean Squared Error (MSE), Pearson correlation loss, and contrastive loss to improve model performance is introduced. The proposed ensemble model, made of Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), and LightGBM, demonstrates superior performance over other models, with significant improvements in prediction accuracy for the Big Five personality traits achieved. Our system officially ranked $2^{nd}$ at the Track 4: PER track.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="osei-brefo-liang-2024-nu">
<titleInfo>
<title>NU at WASSA 2024 Empathy and Personality Shared Task: Enhancing Personality Predictions with Knowledge Graphs; A Graphical Neural Network and LightGBM Ensemble Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Osei-Brefo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huizhi</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Orphée</namePart>
<namePart type="family">De Clercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Barriere</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Barnes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Tafreshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes a novel ensemble approach that combines Graph Neural Networks (GNNs) and LightGBM to enhance personality prediction based on the personality Big 5 model. By integrating BERT embeddings from user essays with knowledge graph-derived embeddings, our method accurately captures rich semantic and relational information. Additionally, a special loss function that combines Mean Squared Error (MSE), Pearson correlation loss, and contrastive loss to improve model performance is introduced. The proposed ensemble model, made of Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), and LightGBM, demonstrates superior performance over other models, with significant improvements in prediction accuracy for the Big Five personality traits achieved. Our system officially ranked 2ⁿd at the Track 4: PER track.</abstract>
<identifier type="citekey">osei-brefo-liang-2024-nu</identifier>
<identifier type="doi">10.18653/v1/2024.wassa-1.36</identifier>
<location>
<url>https://aclanthology.org/2024.wassa-1.36</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>412</start>
<end>419</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NU at WASSA 2024 Empathy and Personality Shared Task: Enhancing Personality Predictions with Knowledge Graphs; A Graphical Neural Network and LightGBM Ensemble Approach
%A Osei-Brefo, Emmanuel
%A Liang, Huizhi
%Y De Clercq, Orphée
%Y Barriere, Valentin
%Y Barnes, Jeremy
%Y Klinger, Roman
%Y Sedoc, João
%Y Tafreshi, Shabnam
%S Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F osei-brefo-liang-2024-nu
%X This paper proposes a novel ensemble approach that combines Graph Neural Networks (GNNs) and LightGBM to enhance personality prediction based on the personality Big 5 model. By integrating BERT embeddings from user essays with knowledge graph-derived embeddings, our method accurately captures rich semantic and relational information. Additionally, a special loss function that combines Mean Squared Error (MSE), Pearson correlation loss, and contrastive loss to improve model performance is introduced. The proposed ensemble model, made of Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), and LightGBM, demonstrates superior performance over other models, with significant improvements in prediction accuracy for the Big Five personality traits achieved. Our system officially ranked 2ⁿd at the Track 4: PER track.
%R 10.18653/v1/2024.wassa-1.36
%U https://aclanthology.org/2024.wassa-1.36
%U https://doi.org/10.18653/v1/2024.wassa-1.36
%P 412-419
Markdown (Informal)
[NU at WASSA 2024 Empathy and Personality Shared Task: Enhancing Personality Predictions with Knowledge Graphs; A Graphical Neural Network and LightGBM Ensemble Approach](https://aclanthology.org/2024.wassa-1.36) (Osei-Brefo & Liang, WASSA-WS 2024)
ACL