@inproceedings{pereira-etal-2024-context,
title = "{C}on{T}ext at {WASSA} 2024 Empathy and Personality Shared Task: History-Dependent Embedding Utterance Representations for Empathy and Emotion Prediction in Conversations",
author = "Pereira, Patr{\'\i}cia and
Moniz, Helena and
Carvalho, Joao Paulo",
editor = "De Clercq, Orph{\'e}e and
Barriere, Valentin and
Barnes, Jeremy and
Klinger, Roman and
Sedoc, Jo{\~a}o and
Tafreshi, Shabnam",
booktitle = "Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, {\&} Social Media Analysis",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wassa-1.42",
doi = "10.18653/v1/2024.wassa-1.42",
pages = "448--453",
abstract = "Empathy and emotion prediction are key components in the development of effective and empathetic agents, amongst several other applications. The WASSA shared task on empathy empathy and emotion prediction in interactions presents an opportunity to benchmark approaches to these tasks.Appropriately selecting and representing the historical context is crucial in the modelling of empathy and emotion in conversations. In our submissions, we model empathy, emotion polarity and emotion intensity of each utterance in a conversation by feeding the utterance to be classified together with its conversational context, i.e., a certain number of previous conversational turns, as input to an encoder Pre-trained Language Model (PLM), to which we append a regression head for prediction. We also model perceived counterparty empathy of each interlocutor by feeding all utterances from the conversation and a token identifying the interlocutor for which we are predicting the empathy. Our system officially ranked 1st at the CONV-turn track and 2nd at the CONV-dialog track.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pereira-etal-2024-context">
<titleInfo>
<title>ConText at WASSA 2024 Empathy and Personality Shared Task: History-Dependent Embedding Utterance Representations for Empathy and Emotion Prediction in Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Patrícia</namePart>
<namePart type="family">Pereira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Moniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joao</namePart>
<namePart type="given">Paulo</namePart>
<namePart type="family">Carvalho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Orphée</namePart>
<namePart type="family">De Clercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Barriere</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Barnes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Tafreshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Empathy and emotion prediction are key components in the development of effective and empathetic agents, amongst several other applications. The WASSA shared task on empathy empathy and emotion prediction in interactions presents an opportunity to benchmark approaches to these tasks.Appropriately selecting and representing the historical context is crucial in the modelling of empathy and emotion in conversations. In our submissions, we model empathy, emotion polarity and emotion intensity of each utterance in a conversation by feeding the utterance to be classified together with its conversational context, i.e., a certain number of previous conversational turns, as input to an encoder Pre-trained Language Model (PLM), to which we append a regression head for prediction. We also model perceived counterparty empathy of each interlocutor by feeding all utterances from the conversation and a token identifying the interlocutor for which we are predicting the empathy. Our system officially ranked 1st at the CONV-turn track and 2nd at the CONV-dialog track.</abstract>
<identifier type="citekey">pereira-etal-2024-context</identifier>
<identifier type="doi">10.18653/v1/2024.wassa-1.42</identifier>
<location>
<url>https://aclanthology.org/2024.wassa-1.42</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>448</start>
<end>453</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ConText at WASSA 2024 Empathy and Personality Shared Task: History-Dependent Embedding Utterance Representations for Empathy and Emotion Prediction in Conversations
%A Pereira, Patrícia
%A Moniz, Helena
%A Carvalho, Joao Paulo
%Y De Clercq, Orphée
%Y Barriere, Valentin
%Y Barnes, Jeremy
%Y Klinger, Roman
%Y Sedoc, João
%Y Tafreshi, Shabnam
%S Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F pereira-etal-2024-context
%X Empathy and emotion prediction are key components in the development of effective and empathetic agents, amongst several other applications. The WASSA shared task on empathy empathy and emotion prediction in interactions presents an opportunity to benchmark approaches to these tasks.Appropriately selecting and representing the historical context is crucial in the modelling of empathy and emotion in conversations. In our submissions, we model empathy, emotion polarity and emotion intensity of each utterance in a conversation by feeding the utterance to be classified together with its conversational context, i.e., a certain number of previous conversational turns, as input to an encoder Pre-trained Language Model (PLM), to which we append a regression head for prediction. We also model perceived counterparty empathy of each interlocutor by feeding all utterances from the conversation and a token identifying the interlocutor for which we are predicting the empathy. Our system officially ranked 1st at the CONV-turn track and 2nd at the CONV-dialog track.
%R 10.18653/v1/2024.wassa-1.42
%U https://aclanthology.org/2024.wassa-1.42
%U https://doi.org/10.18653/v1/2024.wassa-1.42
%P 448-453
Markdown (Informal)
[ConText at WASSA 2024 Empathy and Personality Shared Task: History-Dependent Embedding Utterance Representations for Empathy and Emotion Prediction in Conversations](https://aclanthology.org/2024.wassa-1.42) (Pereira et al., WASSA-WS 2024)
ACL