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Abstract

While Marathi is considered as a low- to
middle-resource language, its 42 dialects have
mostly been ignored, mainly because these di-
alects are mostly spoken and rarely written,
making them extremely low-resource. In this
paper we explore the machine translation (MT)
of Kadodi, also known as Samvedi, which is a
dialect of Marathi. We first discuss the Kadodi
dialect, highlighting the differences from the
standard dialect, followed by presenting a man-
ually curated dataset called Suman consist-
ing of a trilingual Kadodi-Marathi-English dic-
tionary of 949 entries and 942 simple sen-
tence triples and idioms created by native
Kadodi speakers. We then evaluate 3 exist-
ing large language models (LLMs) support-
ingMarathi, namelyGemma-2-9b, Sarvam-2b-
0.5 and LLaMa-3.1-8b, in few-shot prompt-
ing style to determine their efficacy for transla-
tion involving Kadodi. We observe that these
models exhibit rather lackluster performance
in handling Kadodi even for simple sentences,
indicating a dire situation.

1 Introduction

Marathi is a language primarily spoken by about
83 million people1 in the Indian state of Maharash-
tra. Across the world, while a standard dialect of
any language exists, a substantial portion of these
speakers also speak a local dialect and Marathi
is no exception. There are 42 known dialects of
Marathi2 a vast majority of which, if not all, are
spoken rather than written, which makes natural
language processing (NLP) for such dialects ex-
tremely hard. However, excluding these dialects
from NLP systems would lead to a cultural repre-
sentation imbalance, since a significant amount of
culture is connected to languages and their dialects.

1https://en.wikipedia.org/wiki/Marathi_
language

2https://en.wikipedia.org/wiki/Marathi_
language#Dialects

Given the massive Marathi dialect-speaking pop-
ulation, we consider it important to take steps to
include them in NLP systems, the first being via
resource creation and evaluation.
In this paper we focus on a minor dialect

of Marathi, namely, Kadodi3, also known as
Samvedi, which is spoken in the Vasai4 region of
Maharashtra and has about 60,000 native speak-
ers. The Kadodi language is a mix of Konkani,
Gujarati, Marathi and Indo-Portuguese (now ex-
tinct). The speakers of Kadodi are known colloqui-
ally as Kuparis56 which essentiallymeans comrade
and is a term used to call one’s child’s godfather.
The Kupari people are descendants of a mixture of
Samvedi Brahmins, Goan Konkani Brahmins and
Portuguese New Christians; because of intermar-
riages between them. Due to it being a spoken
dialect, it has been passed down over the genera-
tions mainly via conversations. However, this also
means that there is no proper text data available for
NLP applications.
In this paper, we present the first of its kind

study of Kadodi taking Machine Translation (MT)
as a NLP application. We first describe the fea-
tures of the Kadodi language and explain its differ-
ences fromMarathi. Then, we describe the process
of data collection, which was mainly done via two
native speakers of Kadodi, leading to Suman, the
first tri-parallel Kadodi-Marathi-English dataset.
Finally, we attempt to evaluate the translation qual-
ity of Kadodi translation both to and from English
and Marathi via few-shot prompting of 3 LLMs.
where we show that despite our evaluation being
conducted on simple sentences, all LLMs we con-
sidered exhibit lackluster performance, indicating
the need for dedicated pre-training and fine-tuning

3https://en.wikipedia.org/wiki/Kadodi_
language

4https://en.wikipedia.org/wiki/Vasai
5https://en.wikipedia.org/wiki/Kupari
6The feminine form of Kupari is Kumari.
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on dialectic data. Our contributions are as follows:

1. The first study of Kadodi machine translation.

2. A novel dataset called Suman, for Kadodi-
Marathi-English 3-way parallel entries with
about 1,900 dictionary and sentence pairs, to-
tally. We release our dataset publicly7.

3. An evaluation of the translation quality of ex-
isting models involving Kadodi.

Going forward, Kadodi refers to the Kadodi di-
alect and Marathi refers to the standard dialect.

2 Related Work

This paper mainly focuses on the natural language
processing of dialects, specifically machine trans-
lation involving the Kadodi dialect of Marathi.
A vast majority of the dialectic work has been

conducted on Arabic, English and French dialects,
and some of the most prominent works have been
on dialect understanding (Baimukan et al., 2022;
Zampieri et al., 2014; Malmasi et al., 2016; Goutte
et al., 2016; Elmadany et al., 2018; Joukhadar
et al., 2019) and dialect translation (Zbib et al.,
2012; Bouamor et al., 2018; Contarino, 2021; Lent
et al., 2024; Robinson et al., 2024)8. On the
other hand, works on summarization (Olabisi et al.,
2022; Keswani and Celis, 2021) and dialogue (El-
madany et al., 2018; Joukhadar et al., 2019; Mari-
etto et al., 2013) are rather limited due to the un-
availability of data or lack of permissive licenses.
Since dialects are closely related to their stan-

dard variant, multilingual transfer learning (Dabre
et al., 2020) approaches are often helpful along-
side approaches leveraging transliteration (J et al.,
2024; Dabre et al., 2022). Additionally, charac-
ter level systems (Abe et al., 2018) are often ef-
fective in settings where the training data for di-
alects is rather limited, where regularization ap-
proaches are also effective (Liu et al., 2022; Mau-
rya et al., 2023). In low-resource settings, it be-
comes important to leverage linguistic features,
ideally of dialects, to improve translation quality
(Erdmann et al., 2017; Chakrabarty et al., 2022,
2020). On the other hand, since many dialects are

7https://github.com/prajdabre/kadodinlp
8To be accurate, Lent et al. (2024) and Robinson et al.

(2024) focus on Creoles and not dialects. However, we list
these works as applicable to dialects because of the high simi-
larity between Creoles and their ancestor languages, which is
analogous to the similarity between dialects.

Kadodi Marathi English
लात (lat) लाथ (lath) kick
दुद (dud) दूध (dudh) milk
ऑजा (auja) ओझे (ooje) burden
शार (shaar) चार (char) four
हॅन (haen) शेण (shen) cowdung
हन (hun) सण (sun) festival

Table 1: Representative Kadodi words with their
Marathi and English equivalents and pronunciations.

spoken, some researcher focus directly on creat-
ing and leveraging speech data (Plüss et al., 2023).
Joshi et al. (2024) give a comprehensive survey of
NLP for dialects across the world, and we encour-
age readers to read it for an in-depth understanding
of the prominent works carried out in this area.
Works on dialects of Indian languages are rather

nonexistent, with a few exceptions (Maurya et al.,
2023). To the best of our knowledge, this is
the first work on machine translation involving
Kadodi and in general on any dialect of Marathi.

3 Suman: A Kadodi Parallel Corpus

We first give details about the Kadodi dialect con-
trasting it with Marathi followed by a description
of the Kadodi parallel corpus we created from
scratch, which we refer to as Suman. This consists
of a trilingual Kadodi-Marathi-English dictionary
and simple, short sentences.

3.1 Kadodi Language

Given that Kadodi is a dialect of Marathi, it ex-
hibits an extremely high degree of similarity with
the latter, with very few lexical and grammatical
differences. We now briefly explain some key dif-
ferences as follows:
Vowels and Consonants: Marathi primarily uses
14 vowels9 and 34 consonants. However, since
Kadodi is primarily a spoken language, it does not
use 2 out of 14 vowels, namely, ऐ (ay) andऔ (au),
and 4 out of 34 consonants, namely, च (cha), छ
(ccha), ण (na), and ष (sha). The reasons for this
is unknown and undocumented due to the spoken
nature of Kadodi, but consonant dropping10 is a
common feature in dialects.

9Since not everyone is familiar with IPA, we refer readers
to take a look here for an easier reference on how to better
read these characters.

10https://en.wikipedia.org/wiki/Phonological_
history_of_English_consonant_clusters
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Language Sentence

Kadodi
तॉ मजुरी करॉन पॉट भरतॅ
tou majuri karon
pout bhartae

Marathi तो मजुरी करून पोट भरतो
to majuri karun pot bharto

English He makes a living by
working as a laborer

Kadodi तॉ ɟनजलॅ
tou nejlay

Marathi तो झोपला आहे
to zhopla ahe

English He is sleeping

Table 2: Examples of Kadodi sentences along with their
Marathi and English translations and transliterations.

Kadodi Vocabulary: Table 1 gives a list of some
words in Kadodi with their pronunciations, along-
side Marathi and English translations. The reader
will be able to note that the words look mostly sim-
ilar, and the key differences lies in the consonant
usage. For example, the word for cow dung is हॅन
(haen) [Marathi word is शेण (shen)], where the key
difference is the use of हॅ (hae) in place of शे (she).
Note that it is fairly common for श (sha) and स (sa)
to be replaced with ह (ha) in Kadodi. Kadodi also
differs fromMarathi in that it prefers to use voiced
or voiceless dental plosives [त (ta) द (da)] instead
of aspirated and murmured ones [थ (tha) ध (dha)].
Note that a stark change in consonants does not oc-
cur, and often the changes are rather minor. For
example, a plan nasal labial consonant will never
be replaced by a fricative glottal one.
Kadodi Grammar: In Table 2 we give examples
of Kadodi sentences to highlight the subtle differ-
ences with Marathi. As can be seen, the Marathi
and Kadodi sentences sound mostly similar. The
main difference is in the word forms भरतॅ (bharte)
vs भरतो (bharto), and the word choices, ɟनजलॅ (ni-
jley) vs झोपला11 (zhopla). Another interesting
difference is that in Marathi we use झोपला आहे
(zhopla ahe) to say “(he/she) is sleeping” (present
tense) where आहे (ahe) is the verb for “is” or “to
be”, however, in Kadodi, although आहे (ahe) can
be translated as हाय (hai), it is often omitted for the
present tense.
Although there are other minor differences be-

11झोपणे (zhopne) is the more commonly used word for
sleeping, whereas ɟनजणे (nizne) is less commonly used in
Marathi.

Figure 1: Distribution of Kadodi, Marathi and English
sentence lengths.

tween Marathi and Kadodi, we refer the readers to
Russell and Cohn (2012); Francis Correia (1992)
for detailed overviews. We also point to a book
on the Kadodi (Samvedi) community by Pereira
(2007). There are also magazines12 in Kadodi for
interested readers.

3.2 Data Collection
Wenow describe howwe collected data for Kadodi
MT to create Suman. We primarily focused on
collecting Kadodi-Marathi data, since the native
speakers (annotators) of both dialects do not pos-
sess native English proficiency. The annotators
were asked to freely construct any sentences which
came to mind, as long as they considered them to
be useful in daily conversations. Therefore, the
domain of the dataset can be said to be a mix
of general domain, conversational and daily use.
As much as possible, we asked the annotators to
provide English translations, which were manu-
ally corrected by native speakers. Annotators were
asked to provide dictionary entries as well simple
phrases/sentences, leaving longer, complex sen-
tences for the future. All the data was collected
over the span of 1 month via Google sheets. We
had 2 annotators, and they provided a total of 949
tri-parallel dictionary entries and 942 tri-parallel
short sentences. Due to lack of funds, both annota-
tors agreed to create data for free, and for compen-
sation, they were given authorship of this paper.
Dictionary: With the help of annotators, we
have procured a dictionary of 949 entries, start-
ing with all 30 consonants and 12 vowels used in
Kadodi. Furthermore, the annotators have ensured
that for each consonant and vowel type, there are
at least 4 Kadodi words. This dictionary also con-
tains roughly 200 instances of numbers, common
foods, animals and birds, days of the week, names
of months, family relationships, daily use words,

12https://kadodi.in/
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Shots kad-mar kad-eng mar-kad eng-kad
S G L S G L S G L S G L

1 17.0 30.3 37.0 24.3 25.7 28.7 20.2 28.5 30.1 13.2 15.7 18.6
4 22.8 35.4 42.0 24.9 31.4 32.2 18.3 30.4 33.5 14.3 15.3 19.4
8 24.4 35.9 42.1 24.3 31.3 32.0 20.0 30.2 32.3 17.1 13.0 19.6
12 24.3 36.6 42.8 23.1 33.1 32.6 18.5 30.2 32.3 16.5 14.2 18.7

Table 3: chrF scores of translation for Kadodi-Marathi (kad-mar), Kadodi-English (kad-eng), Marathi-Kadodi (mar-
kad) and English-Kadodi (eng-kad) with 1, 4, 8 and 12 shots. We have compared Sarvam-2b-0.5 (S), Gemma-2-9b
(G) and LLaMa-3.1-8b (L) models.

parts of the body, seasons and comparative words.
Sentences: In addition to the dictionaries, the an-
notators also created 912Kadodi sentences of 2199
unique words along with their Marathi and En-
glish translations of 1924 and 1650 unique words,
respectively. The sentence length distribution is
shown in Figure 1. As is evident, most of these
are short phrases and sentences between 2 and 6
words, and the length distributions are mostly sim-
ilar. Note that, Kadodi and Marathi are both mor-
phologically rich languages, so a word can often
be the equivalent of a sentence via agglutination.
Therefore, just because the sentence lengths appear
to be short, they are not all necessarily short in
the content they encapsulate. The annotators also
created 30 Kadodi idioms along with their literal
Marathi translations and explanations in Marathi
and English, leading to 942 triples. However, we
do not consider these for our experiments.

4 Experiments

Wenow describe some simple experiments we con-
duct for Kadodi⇔English and Kadodi⇔Marathi
translation using LLMs.

4.1 Settings

For our experiments, we only focus on the paral-
lel sentences part of Suman. Of the 942 Kadodi-
Marathi-English triples, we randomly choose 12
triples for 1, 4, 8 and 12-shot prompting and
set them aside. Note, once again, we also set
aside 30 idiom triples. This leaves us with 900
triples for testing. As for the models, we use
Sarvam-2b-v0.513 a 2 billion parameter model,
Gemma-2-9b (Team et al., 2024) a 9 billion pa-
rameter model, and LLaMA-3.1-8b (Dubey et al.,
2024) an 8 billion parameter model. All 3 mod-
els have seen Indian languages during pre-training

13https://huggingface.co/sarvamai/
sarvam-2b-v0.5

although, Sarvam-2b-0.5 has been trained exclu-
sively for English and Indian languages, including
Marathi, on a total of 1 trillion tokens each. A brief
evaluation14 of these models on Konkani, Gujarati
and Marathi MT reveals that they have reason-
able translation capabilities via few-shot prompt-
ing. We perform greedy decoding without sam-
pling up to 64 new tokens and use chrF for eval-
uation.

4.2 Results
Table 3 gives the chrF scores15 for Kadodi-
Marathi, Kadodi-English, Marathi-Kadodi and
English-Kadodi translation with varying number
of shots.
1. Generating Kadodi is challenging: As can be
seen, translation into English and Marathi yields
better chrF scores than into Kadodi. We found
that since the models were not trained on Kadodi,
translating into Kadodi leads to very poor transla-
tions. In fact, a manual evaluation showed that
most of the time the generated translations were in
Marathi with some Kadodi word forms. Pronouns
and standalone verbs like (is, am, are) are often
well handled. In a number of cases for the Sarvam-
2b-0.5 model, the Kadodi translations have noth-
ing to do with the sentence being translated, when
the source language is English. This is a form of
off-target hallucinations. However, Gemma-2-9b
and LLaMa-3.1-8b are vastly better. Also note that
these models have an easier time handling trans-
lation between Marathi and Kadodi compared to
translation between English and Kadodi. This is
likely because the models have less overhead trans-
lating between dialects.
2. Limited impact of shots: Although LLMs are

14Since we do not possess any resources for Indo-
Portuguese evaluation we skip this but given that Indo-
Portuguese is a variation of Portuguese, we expect LLaMa
and Gemma to do far better than Sarvam.

15nrefs:1 | case:mixed | eff:yes | nc:6 | nw:0 | space:no | ver-
sion:2.4.1
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touted to work well in few-shot settings, even for
languages not seen before, we expected that in-
creasing the number of shots would condition the
model to better handle Kadodi. For the Sarvam-
2b-0.5 model, this is highly translation direction
dependent, where Kadodi-Marathi and English-
Kadodi generation benefits from increasing shots,
but the other two directions barely benefit from
shots. On the other hand, LLaMa-3.1-8b and
Gemma-2-9b do a significantly better job. Increas-
ing shots from 1 to 4 leads to a large performance
jump, but beyond this the gains are minor for up to
12 shots. Comparing Sarvam, Gemma and LLaMa
models, it appears that scale indeed is important.
Although the latter two models are not intention-
ally designed for Marathi, they do better and the
key difference is the size of the models. Fur-
thermore, the Sarvam model is trained on a vast
amount of synthetic data, whichmight be detrimen-
tal.
Since none of the models does particularly well

for generating Kadodi, despite our evaluation sen-
tences being simple, we suspect that the reason for
this is that they have not seen a shred of Kadodi and
even though, it is a dialect of Marathi. They likely
consider Kadodi as a garbled version of Marathi.
Following the principle of GIGO16, since the in-
puts and expected outputs are what the models per-
ceive as noise, the generated content is fairly noisy.
This indicates the need for incorporating monolin-
gual Kadodi knowledge into these models, some-
thing we leave for future work.

5 Conclusion

In this paper, we presented the first of its kind
study of machine translation of Kadodi, a dialect
ofMarathi spoken in the Vasai region ofMaharash-
tra, India. We described the features of Kadodi
and, Suman, a Kadodi-Marathi-English dataset,
which was manually created, spanning close to
1,900 tri-parallel entries. Our automatic evalua-
tion showed that Kadodi translation via few-shot
prompting of LLMs, even on an Indic exclusive
pre-trained language model which as been trained
for 1 trillion Indic tokens includingMarathi, is still
rather poor. This shows that existing LMs, do not
handleKadodi, and likely other dialects ofMarathi,
indicating a dire situation. However, this means
that the field of NLP of Marathi dialects is ripe for

16https://en.wikipedia.org/wiki/Garbage_in,
_garbage_out

exploration. In the future, we would like to expand
our dataset, not only to include additional parallel
sentences but also branch out to other tasks like
summarization, headline generation and question
answering, to name a few.

Limitations

This paper focuses on a rather simple case of
Kadodi translation, where the resources are small
dictionaries and short sentences. However, we
plan to scale up data collection and cover more
complex sentences spanning multiple domains,
subject to annotator availability and budget. We
also do not focus on fine-tuning LLMs due to the
non-availability of training corpora, but we expect
this to be sorted out as our data collection efforts
ramp up.
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