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Abstract

CycleGN is a Neural Machine Translation
framework relying on the Transformer architec-
ture. Its approach is similar to a Discriminator-
less CycleGAN, specifically tailored for non-
parallel text datasets.

The foundational concept of our research posits
that in an ideal scenario, retro-translations of
generated translations should revert to the orig-
inal source sentences. Consequently, a pair of
models can be trained using a Cycle Consis-
tency Loss only, with one model translating
in one direction and the second model in the
opposite direction.

As a contribution to the WMT24 challenge,
this study explores the efficacy of the CycleGN
architectural framework in learning transla-
tion tasks across two language pairs, English-
Chinese and German-English, under two dis-
tinct non-parallel dataset conditions: permuted
and non-intersecting. Our findings demonstrate
the robust adaptability of CycleGN in learning
translation tasks, irrespective of the language
pair.

1 Introduction

The introduction of the Transformer architecture
(Vaswani et al., 2017) marked a significant advance-
ment in the field of Machine Translation, witness-
ing widespread adoption since its inception. Al-
though self-attention mechanisms were not novel
and had been investigated in prior studies (Bah-
danau et al., 2016), the Transformer model demon-
strated its formidable capabilities within Natural
Language Processing (NLP). Characterized by its
parallelized structure, the Transformer architec-
ture facilitated computational efficiency, enabling
the incorporation of a larger number of param-
eters. This enhancement has been exemplified
in NLP systems like Charles University Block-
Backtranslation-Improved Transformer Translation
(cubbitt) (Popel et al., 2020), which have surpassed

the performance levels of human professionals in
certain contexts.

Neural Machine Translation (NMT) datasets ne-
cessitate substantial text corpora, structured as
aligned pairs. This alignment implies the require-
ment for sentences with equivalent meaning to be
present in a minimum of two distinct languages,
enabling the initiation of model training to forge
linguistic linkages. Ongoing initiatives, includ-
ing OPUS (Tiedemann and Thottingal, 2020) and
Tatoeba (Tiedemann, 2012), are committed to fa-
cilitating public access to these datasets. Parallel
datasets comprise a small subset of the volume of
data in monolingual datasets.

Despite the widespread availability of large par-
allel corpora for numerous language pairs, the
capacity to employ solely monolingual datasets
would substantially expand the pool of training
data. This approach is particularly beneficial for
languages with scarce parallel text corpora.

Regardless of the remarkable efficacy exhibited
by Large Language Models (LLM) in NMT with-
out the necessity of exclusive training on parallel
data (Zhu et al., 2023), their considerable magni-
tude renders them costly in terms of both training
and operation. This economic burden consequently
restricts their widespread availability.

Back-translation (Sennrich et al., 2016) is a tech-
nique leveraging a trained MT (Machine Transla-
tion) model to translate sentences from a mono-
lingual dataset to produce corresponding pairs,
thereby synthetically augmenting the training data.
Our research is founded on the premise that the
process of translating a sentence from a source
language to a target language, followed by its retro-
translation from the target language back to the
source language, allows for the measurement of
the disparity between the original and the machine-
retro-translated sentences. This disparity serves as
a metric to assess the efficacy of the models and
facilitates the backpropagation of gradients within
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the networks. Notably, this methodology has been
previously implemented in the realm of Image-to-
Image Translation, as evidenced in the renowned
CycleGAN framework from Zhu et al. (2017).

2 Previous work

The TextCycleGAN model (Lorandi et al., 2023),
while not utilizing the Transformer architecture nor
operating within the MT field, introduced an inno-
vative strategy for text style transfer. This approach
employed a CycleGAN on the Yelp dataset to fa-
cilitate the learning of mappings between positive
and negative textual styles, notably in the absence
of paired examples.

Shen et al. (2017) exemplified the feasibility of
training two encoder-decoder networks in an unsu-
pervised manner that enables the sharing of a latent
space, thereby permitting style transfer. Lample
et al. (2018), adopting a similar technique within
the MT context, substantiated that the use of paral-
lel datasets is not a prerequisite for effective trans-
lation.

3 Definitions

Machine Translation models are most commonly
trained using “parallel” datasets, which are struc-
tured collections of text pairs. Each pair comprises
a segment of text in a source language and its
translation in the target language. By providing
direct translations, models learn correspondences
between text units to map the source language to
the target language.

A non-parallel dataset on the other hand does
not consist in pairs of text segments, consequently
the source and target sentences do not share any
explicit correspondence. Such a dataset can be cre-
ating by combining any two monolingual datasets
of two distinct languages and adjusting for the num-
ber of samples. In the context of this research, two
sub-categories of non-parallel datasets are intro-
duced.

3.1 Permuted dataset

A “permuted” dataset is defined as a parallel dataset
wherein the sentences of one language have been
systematically rearranged. Consequently, this re-
sults in a non-parallel corpus where it is guaranteed
that each sentence has a corresponding translation
located at an unspecified index within the dataset.
The authors postulate that when employing suffi-
ciently large monolingual datasets, which are not

derived from permuted parallel corpora, it is likely
that most sentences will possess an accurate trans-
lation “somewhere” within the dataset.

3.2 Non-intersecting dataset
A “non-intersecting” dataset is a non-parallel
dataset for which it is guaranteed that no sentence
has an exact translation. A non-intersecting dataset
is derived from a meticulously curated parallel
dataset devoid of duplicate entries. Two unique
sets of natural integers are produced, each function-
ing as an index list of phrases to retain for each
respective language.

4 Datasets

The datasets employed in this study are the English-
German and Chinese-English language pairs from
the WMT23 challenge (Kocmi et al., 2023). The
data released for the WMT23 General MT task can
be freely used for research purposes. Due to the
current implementation’s high computational de-
mands, the models were not trained for the entirety
of an epoch. Specifically, only 10% of the English-
German dataset was used, while about half of the
Chinese-English dataset in the non-intersecting
condition.

Type English-German Chinese-English
Permuted 27,801,496 27,801,496

Non-intersecting 27,801,496 17,676,442
Original dataset 295,805,439 35,452,884

Table 1: Number of sentences used during training de-
pending on the dataset type

5 Training

For greater clarity, the mathematical notations from
the original CycleGAN work will be employed in
the present study. Given two languages X and Y
with appropriate datasets, the objective is to obtain
two NMT models G : X 7→ Y and F : Y 7→ X
such that if the translations are perfect, G(F(y)) =
y and F(G(x)) = x, with x ∈ X and for y ∈ Y .

By using the Cross-Entropy Loss (CEL) (Zhang
and Sabuncu, 2018) in the role of the Cycle Consis-
tency Loss (CCL), we can determine the distance
between the original sentence and its double trans-
lation in order to compute the gradients.

As in the original CycleGAN work, our current
study also implements an Identity Loss (IL), which
also relies on the CEL, to help with the training
stability. As G consists in a mapping X 7→ Y , if
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given an input y ∈ Y , the input should remain
unchanged such that G(y) = y. The same loss is
applied to F between F(x) and x, as displayed in
Figure 1.

5.1 Model architecture

The architecture used for both models, G and F ,
is the Marian framework (Junczys-Dowmunt et al.,
2018) implemented by Huggingface’s Transform-
ers library (Wolf et al., 2020), which is licensed
under the Apache Licence. While most parameters
follow the default configuration, Table 2 references
the changes that were made in order to reduce the
computational cost of the architecture.

Parameter Huggingface Current work
Vocabulary size 58,101 32,000
Encoder layers 12 6
Decoder layers 12 6

Encoder attention heads 16 8
Decoder attention heads 16 8
Encoder feed-forward 4096 2048
Decoder feed-forward 4096 2048
Position embeddings 1024 128
Activation function GELU ReLU

Table 2: Non-default parameters in the configuration of
Marian Transformer models

5.2 Vocabulary organization

NMT models usually employ either a unified tok-
enizer or two distinct tokenizers. In the case of a
single tokenizer, it is trained using sentences from
both the source and target distributions, avoiding
any duplicates. This approach facilitates the shar-
ing of the encoder and decoder embedding layers,
thereby diminishing computational demands and
enhancing model accuracy (Press and Wolf, 2017).

Conversely, the alternative approach entails train-
ing one tokenizer on the source distribution and
another one on the target distribution. While this
method restricts the possibility of tying embed-
dings, it can potentially double the vocabulary size
without increasing the dimensions of the embed-
dings. The overall vocabulary size of the model
in this scenario, is the cumulative total of the two
individual vocabularies, barring shared tokens like
punctuation symbols.

While contemporary Transformer models like
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019) and Genera-
tive Pre-trained Transformers (GPT) (Radford et al.,
2018) typically utilize a single tokenizer, this study

introduces a novel vocabulary methodology that
amalgamates the aforementioned approaches. This
method involves training two tokenizers, each for
a respective language and with half the vocabulary
size. Subsequently, the identifiers of one tokenizer
are adjusted to prevent overlap, yielding a result
analogous to a single tokenizer that includes dupli-
cates across languages. It is important to note that
special tokens such as < eos > (End of Sentence)
and < pad > (Padding) are shared and not dupli-
cated. This strategy is designed to simplify model
analysis during development, albeit at the expense
of a reduced vocabulary.

5.3 Obtaining labels
In the training process of a Transformer model, it is
imperative to have prior knowledge of the labels, as
the decoder predicts tokens sequentially. Each to-
ken prediction, barring the initial one, is contingent
upon all preceding predictions. By possessing prior
knowledge of the reference translation, it becomes
feasible to contrast each predicted token against the
ground truth, enabling the calculation of the loss at
every step.

Nevertheless, in the case of non-parallels
datasets, the labels are by definition not known
in advance. It is therefore not possible to calculate
the loss after each predicted token. Furthermore,
the act of selecting the most probable token for
each prediction constitutes a non-differentiable op-
eration, thus precluding the possibility of backprop-
agation once the sentence is fully generated.

Naturally, in inference mode, Transformers are
able to generate sentences without labels. Thus,
the first step is to generate the pseudo-labels x̂ and
ŷ, where x̂ is used as the label of y and ŷ as the
label of x. Even though this step cannot be used
to compute the gradients, it is crucial for the entire
process.

ˆ̂x is computed from from F(ŷ) with x as the
label, and ˆ̂y is computed from G(x̂) with y as the
label. The CCL is applied between ˆ̂x and x, and be-
tween ˆ̂y and y to compute the gradients and update
the weights of G and F .

5.4 A Discriminator-less GAN
The CycleGAN methodology, as indicated by its
nomenclature, is predicated on the Generative
Adversarial Network (GAN) framework, initially
introduced in Goodfellow et al. (2014). This
paradigm involves the training of a Generator
model in conjunction with another model, termed
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Figure 1: CycleGN training process

the Discriminator. The Discriminator is specifically
trained to distinguish between authentic samples
drawn from the dataset and synthetic samples pro-
duced by the Generator. In the CycleGAN train-
ing process, the Discriminators intervene after the
generation of x̂ and ŷ, helping the training of the
Generators. However, as mentioned in Section 5.3,
there can be no gradient computation during the
generation of x̂ and ŷ in a Transformer and as such,
Discriminators cannot be used in the present work.
This is why CycleGN is not an “Adversarial” ap-
proach, hence the name.

6 Pre-training

During the development of CycleGN, a critical is-
sue became clear, which prevented the model’s
ability to converge and learn effectively. As de-
scribed in Section 5.3, the first step of the CycleGN
framework is to generate x̂ and ŷ. During the first
initialisations, these pseudo-labels will be gener-
ated randomly and will depend only on the initial-
ization of the weights of G and F . However, the
models consistently converge towards a trivial solu-
tion wherein by merely reproducing the input, they
satistisfy the loss function criteria without achiev-
ing any meaningful learning or transformation of
the data.

6.1 Absence of intermediate evaluation

As there is no Discriminator to ensure that x̂ be-
longs to X and ŷ belongs to Y , G and F converge
towards x = ŷ = ˆ̂x and y = x̂ = ˆ̂y, as this ap-
proach achieves an optimal outcome on the CCL
function, registering a value of zero, as schematised
in Figure 2.

Figure 2: In the absence of a Discriminator y ∈ Y and
pre-training is not employed, the CycleGN architecture
will converge towards a state where no translation hap-
pens and still perfectly satisfy the CCL function

6.2 Moving away from the easiest path

Masked Language Modeling (MLM) is a pre-
training strategy implemented in BERT, where a
specified proportion of the input tokens are sub-
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stituted with a unique < mask > token. The ob-
jective of the neural network under this paradigm
is to accurately reconstruct the original sentence
from this degraded input. This process enables the
model to discern intricate relationships between
words and to develop a profound representation of
the language. This pre-training has revealed excel-
lent performances in diverse NLP application such
as sentiment analysis (Alaparthi and Mishra, 2021),
text classification (Sun et al., 2020), Named Entity
Recognition (NER) (Souza et al., 2020) (Chang
et al., 2021) (Akhtyamova, 2020) and paraphrase
detection (Khairova et al., 2022).

As MLM does not require any labels, as the la-
bels are generated from the dataset, it is perfectly
adapted to the CycleGN approach. A single model
H is trained on the non-parallel dataset to recon-
struct both languages, with 15% of the input tokens
masked. This model H has the exact same archi-
tecture as G and F . When training the CycleGN,
rather than randomly initializing G and F , the pa-
rameters from H are directly transferred to both
G and F . Indeed, as H learns to reconstruct both
language X and Y , it can be used to initialize both
networks. Figure 3 shows the training process of
H.

Figure 3: Masked Language Modeling training process

7 Training stability

It is crucial for the CycleGN framework that the
two models exhibit approximately equivalent levels
of performance. Given the interdependent nature
of these models, where the output of one serves as
the input for the other, maintaining consistency be-
tween them during training is imperative. Without
a strategy in place to prevent the performance of
the models from diverging, it is possible for one
model to gain the “upper hand” over the other.

7.1 Divergence between the Generators

Figure 4 presents the evolution of the CCL of an
early prototype of CycleGN and it can clearly be
seen that one of the two generators, F , ends up per-
forming much better than its counterpart G, which
blocks any future training.

Figure 4: Evolution of the Cross-Entropy Loss dur-
ing the training of an early prototype on the permuted
German-English dataset

7.2 Gradient Clipping

Gradient clipping is a technique utilized in the train-
ing of Deep Learning (DL) models, to address the
problem of “exploding” gradients. This issue oc-
curs when gradients escalate to excessively high
values during training, leading to numerical insta-
bility and impeding the model’s convergence to an
optimal solution.

Gradient clipping can be implemented through
two primary methods: norm clipping and value
clipping. Norm clipping involves establishing a
threshold on the overall magnitude of the gradient
vector. On the other hand, value clipping involves
individually adjusting elements of the gradient vec-
tor that exceed the specified threshold.

By clipping the gradients by norm, with a thresh-
old of 1.0, as advised by the Huggingface library,
the training stabilizes and the divergence between
G and F disappears.

Figure 5 demonstrates how the addition of gradi-
ent clipping helps with training stability during the
training of the permuted German-English model.

7.3 Batch size

The original CycleGAN research mentions using
a batch size of 1, and while they did not state the
reason in the research paper, one of the authors
explained it in a GitHub issue (Junyanz, 2017) as a
lack of GPU memory.

Rajput et al. (2021) examined the impact of batch
size within the CycleGAN architecture, observing
a significant decline in performance the more the
batch size is increased. This deterioration was evi-
dent both through the example images presented in
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Figure 5: Evolution of the Cross-Entropy Loss during
the training of the permuted German-English models

that study and through the calculated cosine dissim-
ilarity, indicating inferior model performance with
larger batch sizes. However, quality was achieved
at the expense of computational efficiency, as the
training duration to achieve 200 epochs was 8 hours
with a batch size of 1, but this was reduced to just
2 hours with a batch size of 64.

In the context of this research, however, the trade-
off between quality improvement and computing
resource, as observed in the aforementioned study,
does not hold true. Utilizing a batch size of 1 in
the CycleGN experiments hindered any form of
convergence. Consequently, a batch size of 32 was
selected, as it represents the maximum capacity
that could be accommodated within the available
24GB of GPU memory of the NVidia 4090 used
for this work.

7.4 One large epoch or multiple smaller ones?

The CycleGAN framework is recognized for its
computational expense due to several inherent fac-
tors. Primarily, as CycleGAN operates on the prin-
ciple of cycle consistency, it necessitates the train-
ing of two GANs simultaneously – one for each
direction of the transformation. This structure re-
quires substantial computational resources, as each
GAN consists of both a Generator and a Discrimi-
nator.

The resource-intensiveness of the CycleGAN
process, thus limits the size of the dataset that can
be used in a reasonable time. This necessitated a
decision between training for a single epoch on a
large dataset, or training for multiple epochs on a
smaller corpus arose.

The CycleGN framework was compared on the

permuted German-English dataset under four dif-
ferent conditions:

1. One epoch containing 1% of the dataset

2. Five epochs containing 0.2% of the dataset

3. One epoch containing 2% of the dataset

4. Five epochs containing 0.4% of the dataset

The Crosslingual Optimised Metric for Evalu-
ation of Translation (COMET) score (Rei et al.,
2020) was selected as our comparison criterion, as
this metric has proven to be one of the most ef-
fective in recent WMT competitions, according to
Kocmi et al. (2022), due to its strong correlation
with human judgment, aligning well with our goal
of mirroring human evaluative standards. Multiple
COMET models have been made available and the
default “wmt22-comet-da” model was chosen. The
average scores obtained on 10,000 test sentences
that were not part of the model training set are
presented in Table 3.

Condition English->German German->English
1 0.2727 0.2715
2 0.2411 0.2635
3 0.2741 0.2665
4 0.2258 0.2658

Table 3: COMET scores of CycleGN models depending
on the permuted German-English dataset condition

Models exposed to a larger portion of the to-
tal dataset demonstrate superior performance com-
pared to those limited to a smaller, repetitive subset,
especially when the dataset encompasses over half
a million to a million sentences. The authors extrap-
olate this result to larger datasets and thus chose
to train the CycleGN models for a single epoch on
the largest dataset possible.

8 Results

Even if tracking the CCL is an inexpensive man-
ner to estimate the progress of the training of the
CycleGN architecture, a low loss value can also
hide an absence of translation, as mentioned in Sec-
tion 6.1. This is why an evaluation metric such as
COMET is crucial to assess the progression of the
CycleGN framework.
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8.1 Evolution of COMET score during
training

To measure the performances of CycleGN, every
1,000th batch the CCL was averaged and 1,000 sen-
tences from the test set were translated to compute
the COMET score.

Figures 6, 7, 8 and 9 demonstrate that the ac-
tual quality of translation, as measured by the
COMET metric, increases with time. Figures 6
through 9 illustrate a progressive enhancement in
the translation quality over time, as quantified by
the COMET metric. This enhancement is observed
respectively in the permuted and non-intersecting
German-English models (Figures 6 and 7), as well
as in the permuted and non-intersecting English-
Chinese models (Figures 8 and 9). Figures 6 and
7 exhibit a sudden drop in the increase of accu-
racy, which is acknowledged by the authors. This
anomaly will be thoroughly examined and dis-
cussed in a subsequent academic study.

Figure 6: Evolution of the COMET score during the
training of the permuted German-English models

8.2 COMET Scores post-training completion

After the end of the training, a test set of 10,000
sentences per language were translated and the
COMET scores are displayed in Table 4. In order to
give a point of comparison, architecture-matched
models using the original parallel datasets were
trained. As in the case of the CycleGN training,
these parallel models were only trained for a single
epoch on the exact same number of sentences as
the permuted models were.

The authors expected the COMET score of the
CycleGN to be inferior to architecture-matched
models trained using parallel corpora, as informa-
tion is by definition lost during the permutation of

Figure 7: Evolution of the COMET score during the
training of the non-intersecting German-English models

Figure 8: Evolution of the COMET score during the
training of the permuted Chinese-English models

Figure 9: Evolution of the COMET score during the
training of the non-intersecting Chinese-English models

the parallel datasets. However, the authors argue
that the differences between the scores is likely
smaller with larger datasets.
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English → German German → English
Permuted 0.505 0.537

Non-intersecting 0.556 0.579
Parallel 0.780 0.775

Table 4: COMET score of the German-English models

English → Chinese Chinese → English
Permuted 0.425 0.537

Non-intersecting 0.382 0.448
Parallel 0.000 0.749

Table 5: COMET score of the Chinese-English models

9 Future Work

Further investigations will benefit from the incor-
poration of a more extensive dataset and an explo-
ration of larger model architectures.

9.1 Larget dataset
The current work has been trained on a small
dataset compared to MT standards. Future work
should try to see how convergence progresses with
more iterations. Further computational optimiza-
tions are probably necessary to shorten the training
time required.

9.2 Larger models
The current architecture relies on a total of
158,769,152 parameters, which is only about a
third of the size of the default in the Huggingface
library. Although Tables 4 and 5 demonstrate that
the current number of parameters, when trained
using a parallel dataset, is capable of producing
better translations than when exposed to permuted
and non-intersecting datasets, an increase in both
the number of epochs and the size of the dataset
should be prioritized, larger models being common
in NMT.

10 Source Code

The source code of CycleGN is available at
https://github.com/SorenDreano/CycleGN.

Limitations

The investigation acknowledges certain inherent
limitations which may impact the generalizability
and applicability of the findings.

Language diversity
Another issue that arises from the computing cost
of CycleGN is the lack in language diversity. In-
deed, our current work only used the English-

German and Chinese-English language pairs. Con-
sequently, it cannot be certain that the approach
presented can be applied to other languages and all
alphabets. This is why CycleGN is taking part in
WMT24, to explore the framework’s performance
on a wide range of language pairs.

Training limitations

Since training a CycleGN model is particularly
costly, there is a trade-off between training models
on all language pairs, or choosing a subset of these
pairs to train fewer models with more iterations
and on a greater number of examples. In order
to demonstrate the effectiveness of CycleGN on a
wide range of language pairs, the first choice was
made, i.e. to train models on all pairs, even if this
means obtaining inferior results.

Unused models

Unlike the previous edition (Kocmi, 2023), where
most language pairs were bidirectional, i.e. the
evaluations were to and from, the 2024 General
Translation task is unidirectional. This means that
for each language pair, it is sufficient to train a
model that translates from the source to the target.

This is not a change that is favourable to Cy-
cleGN, since it is a bidirectional training architec-
ture. Indeed, its cyclical nature means that one
model must be trained from one language to an-
other, and another model must complete the cycle,
i.e. from this second language to the first. In other
words, half the time spent training CycleGN is
spent training a model which only serves to train
the first, but which will never be evaluated in the
contest.

This change has been accompanied by an in-
crease in the number of language pairs, from 6
bidirectional and 2 unidirectional in 2023 to 11
unidirectional in 2024.

Monolingual datasets

During the WMT challenge, teams are provided
with monolingual datasets. Although this dataset
format is perfectly suited to CycleGN training, they
have been discarded for two reasons. The first is
that for the majority of language pairs, the paral-
lel datasets supplied have been truncated in order
to reduce training time. The second is related to
the construction of permuted and non-intersecting
datasets, since it is preferable to build them from
non-parallel datasets, as detailed in Section 3.
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Reduced dataset sizes

The datasets were truncated to obtain a maximum
of 27,801,496 sentences for training and 100,000
sentences for the development set. The final size
of the datasets used and the number of epochs is
shown in Table 6 for permuted models and Table 7
for non-intersecting models. While the permuted
models have all been trained, this was not the case
for the non-intersecting models, due to lack of time.

Training time

To make it possible to train so many models, sev-
eral machines were used, with different technical
characteristics, in particular different GPUs. How-
ever, by estimating the training time according to
the number of sentences in the dataset and the
GPU used, the total training time for all the models
trained on the WMT24 datasets represents approxi-
mately 3,700 hours on an NVidia 4090.

Ethics Statement

This study, focusing on the training of NMT mod-
els using non-parallel datasets, adheres to the high-
est ethical standards in research. We recognize
the critical importance of ethical considerations
in computational linguistics and machine learning,
especially as they pertain to data sourcing, model
development, and potential impacts on various lin-
guistic communities.

Our research utilizes publicly available, non-
parallel linguistic datasets. We ensure that all data
is sourced following legal and ethical guidelines,
respecting intellectual property rights and privacy
concerns.

In our commitment to scientific integrity, we
maintain transparency in our research methodolo-
gies, model development, and findings. We aim to
make our results reproducible and accessible to the
scientific community, contributing positively to the
field of machine translation.
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Language pair Parallel sentences in WMT24 dataset Sentences used Number of epochs
Czech-Ukrainian 10,757,756 10,657,756 1
English-Chinese 55,216,751 27,801,496 1
English-Czech 56,288,239 27,801,496 1

English-German 295,805,439 27,801,496 1
English-Hindi 315,070 314,070 10

English-Icelandic 23,434,361 23,334,361 1
English-Japanese 33,875,119 27,801,496 1
English-Russian 75,961,169 27,801,496 1
English-Spanish 626,076,911 27,801,496 1

English-Ukrainian 16,062,359 15,962,359 1
Japanese-Chinese 22,642,571 22,542,571 1

Table 6: Comparison between the number of sentences available in the WMT24 dataset and the number of sentences
used to train the permuted models depending on the language pair
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