@inproceedings{sung-etal-2024-context,
title = "Context-Aware {LLM} Translation System Using Conversation Summarization and Dialogue History",
author = "Sung, Mingi and
Lee, Seungmin and
Kim, Jiwon and
Kim, Sejoon",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Ninth Conference on Machine Translation",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wmt-1.102",
pages = "1011--1015",
abstract = "Translating conversational text, particularly in customer support contexts, presents unique challenges due to its informal and unstructured nature. We propose a context-aware LLM translation system that leverages conversation summarization and dialogue history to enhance translation quality for the English-Korean language pair. Our approach incorporates the two most recent dialogues as raw data and a summary of earlier conversations to manage context length effectively. We demonstrate that this method significantly improves translation accuracy, maintaining coherence and consistency across conversations. This system offers a practical solution for customer support translation tasks, addressing the complexities of conversational text.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sung-etal-2024-context">
<titleInfo>
<title>Context-Aware LLM Translation System Using Conversation Summarization and Dialogue History</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mingi</namePart>
<namePart type="family">Sung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seungmin</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiwon</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sejoon</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Translating conversational text, particularly in customer support contexts, presents unique challenges due to its informal and unstructured nature. We propose a context-aware LLM translation system that leverages conversation summarization and dialogue history to enhance translation quality for the English-Korean language pair. Our approach incorporates the two most recent dialogues as raw data and a summary of earlier conversations to manage context length effectively. We demonstrate that this method significantly improves translation accuracy, maintaining coherence and consistency across conversations. This system offers a practical solution for customer support translation tasks, addressing the complexities of conversational text.</abstract>
<identifier type="citekey">sung-etal-2024-context</identifier>
<location>
<url>https://aclanthology.org/2024.wmt-1.102</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>1011</start>
<end>1015</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Context-Aware LLM Translation System Using Conversation Summarization and Dialogue History
%A Sung, Mingi
%A Lee, Seungmin
%A Kim, Jiwon
%A Kim, Sejoon
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Ninth Conference on Machine Translation
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F sung-etal-2024-context
%X Translating conversational text, particularly in customer support contexts, presents unique challenges due to its informal and unstructured nature. We propose a context-aware LLM translation system that leverages conversation summarization and dialogue history to enhance translation quality for the English-Korean language pair. Our approach incorporates the two most recent dialogues as raw data and a summary of earlier conversations to manage context length effectively. We demonstrate that this method significantly improves translation accuracy, maintaining coherence and consistency across conversations. This system offers a practical solution for customer support translation tasks, addressing the complexities of conversational text.
%U https://aclanthology.org/2024.wmt-1.102
%P 1011-1015
Markdown (Informal)
[Context-Aware LLM Translation System Using Conversation Summarization and Dialogue History](https://aclanthology.org/2024.wmt-1.102) (Sung et al., WMT 2024)
ACL