@inproceedings{zhu-etal-2024-enhancing,
title = "Enhancing Translation Quality: A Comparative Study of Fine-Tuning and Prompt Engineering in Dialog-Oriented Machine Translation Systems. Insights from the {MULTITAN}-{GML} Team",
author = "Zhu, Lichao and
Zimina, Maria and
Namdarzadeh, Behnoosh and
Ballier, Nicolas and
Yun{\`e}s, Jean-Baptiste",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Ninth Conference on Machine Translation",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wmt-1.103",
pages = "1016--1022",
abstract = "For this shared task, we have used several machine translation engines to produce translations (en ⇔ fr) by fine-tuning a dialog-oriented NMT engine and having NMT baseline translations post-edited with prompt engineering. Our objectives are to test the effectiveness of a fine-tuning strategy with help of a robust NMT model, to draw out a from-translation-to-post-editing pipeline, and to evaluate the strong and weak points of NMT systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhu-etal-2024-enhancing">
<titleInfo>
<title>Enhancing Translation Quality: A Comparative Study of Fine-Tuning and Prompt Engineering in Dialog-Oriented Machine Translation Systems. Insights from the MULTITAN-GML Team</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lichao</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Zimina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Behnoosh</namePart>
<namePart type="family">Namdarzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Ballier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean-Baptiste</namePart>
<namePart type="family">Yunès</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>For this shared task, we have used several machine translation engines to produce translations (en ⇔ fr) by fine-tuning a dialog-oriented NMT engine and having NMT baseline translations post-edited with prompt engineering. Our objectives are to test the effectiveness of a fine-tuning strategy with help of a robust NMT model, to draw out a from-translation-to-post-editing pipeline, and to evaluate the strong and weak points of NMT systems.</abstract>
<identifier type="citekey">zhu-etal-2024-enhancing</identifier>
<location>
<url>https://aclanthology.org/2024.wmt-1.103</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>1016</start>
<end>1022</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Translation Quality: A Comparative Study of Fine-Tuning and Prompt Engineering in Dialog-Oriented Machine Translation Systems. Insights from the MULTITAN-GML Team
%A Zhu, Lichao
%A Zimina, Maria
%A Namdarzadeh, Behnoosh
%A Ballier, Nicolas
%A Yunès, Jean-Baptiste
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Ninth Conference on Machine Translation
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F zhu-etal-2024-enhancing
%X For this shared task, we have used several machine translation engines to produce translations (en ⇔ fr) by fine-tuning a dialog-oriented NMT engine and having NMT baseline translations post-edited with prompt engineering. Our objectives are to test the effectiveness of a fine-tuning strategy with help of a robust NMT model, to draw out a from-translation-to-post-editing pipeline, and to evaluate the strong and weak points of NMT systems.
%U https://aclanthology.org/2024.wmt-1.103
%P 1016-1022
Markdown (Informal)
[Enhancing Translation Quality: A Comparative Study of Fine-Tuning and Prompt Engineering in Dialog-Oriented Machine Translation Systems. Insights from the MULTITAN-GML Team](https://aclanthology.org/2024.wmt-1.103) (Zhu et al., WMT 2024)
ACL