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Abstract

In this paper, we present our approach to the
WMT24 - Chat Task, addressing the challenge
of translating chat conversations. Chat con-
versations are characterised by their informal,
ungrammatical nature and strong reliance on
context posing significant challenges for ma-
chine translation systems. To address these
challenges, we augment large language mod-
els with explicit memory mechanisms designed
to enhance coherence and consistency across
dialogues. Specifically, we employ graph rep-
resentations to capture and utilise dialogue con-
text, leveraging concept connectivity as a com-
pressed memory. Our approach ranked second
place for Dutch and French, and third place for
Portuguese and German, based on COMET-22
scores and human evaluation.

1 Introduction

Machine translation (MT) has been a prominent
area of research, leading to the development of
various approaches over the years (Maruf et al.,
2021). While significant progress has been made,
the majority of research has concentrated on refin-
ing methodologies rather than exploring the dif-
ferent types of text that require translation. A no-
table gap exists in the automatic translation of chat
conversations—a gap that the WMT24 - Chat task
specifically aims to address.

Chat conversations present unique challenges
due to their informal, spontaneous nature, and
frequent grammatical inconsistencies (Gonçalves
et al., 2022). These characteristics starkly contrast
with the more structured and formal text types, such
as news articles, technical manuals, and political
or medical documents, which have been the tradi-
tional focus of MT systems. In the context of chat
translation, it is crucial to incorporate dialogue con-
text effectively and to model the speakers and their
language direction.

* Corresponding author.
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Figure 1: Approach 1: Triple-TowerInstruct

Recent advances in machine translation have
increasingly leveraged large language models
(LLMs). However, as noted by Maharana et al.
(2024), LLMs often struggle with tasks requiring
long-term memory, reasoning over historical con-
text, and establishing long-range temporal or causal
connections. These limitations are particularly
problematic to dialogue tasks, where maintaining
coherence and consistency across a conversation is
vital.

To address these challenges, our system pro-
poses enhancing LLMs with explicit memory
mechanisms designed to support the generation
of more consistent and coherent translations in dia-
logue settings1. We hypothesise that utilising graph
representations will further improve the translation
of chat conversations by capturing the connectivity
between concepts, thus serving as a compressed
memory of the dialogue context.

2 Related Work

In this section, we provide a brief overview of re-
lated work in the areas of conversational NLP, ma-
chine translation of conversational text, and text
generation methods that incorporate knowledge
graphs as an additional source of information.

1All code and data related available at https://github.
com/selBaez/chat-task-2024-data.
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Conversational NLP Dialogue systems have a
long-standing history in NLP. The advent of LLMs
has led to significant improvements in the quality of
these systems. However, a persistent challenge has
been the limited context window of LMs, which re-
stricts their ability to manage long chat histories ef-
fectively (Xu et al., 2021). To address this, retrieval-
augmented models have been developed, which
retrieve relevant passages from prior interactions
to maintain coherence in dialogue over extended
conversations (Xu et al., 2021). Recently, advance-
ments in model architecture have resulted in sub-
stantially larger context windows, enabling state-of-
the-art dialogue systems, such as ChatGPT, to op-
erate effectively with this extensive LMs (Achiam
et al., 2023).

Machine Translation Machine translation has
seen remarkable advancements with the rise of
large language models (Wang et al., 2023; Robin-
son et al., 2023). However, translating dialogues
remains a particularly challenging task due to the
informal and often context-dependent nature of
conversational text (Gonçalves et al., 2022). The
findings of recently shared tasks highlight ongoing
difficulties and emerging solutions in this area (Far-
inha et al., 2022).

Our work is particularly related to the use of
knowledge graphs in translation tasks (Moussallem
et al., 2018; Zhao et al., 2021). In most exist-
ing approaches, multilingual knowledge graphs are
leveraged to disambiguate and translate key entities
within the text. This approach differs significantly
from our method, as we employ a monolingual
graph to store key information from the dialogue
in a compressed format, facilitating more accurate
and context-aware translations.

Graph-based Dialogue Systems Knowledge
graphs have proven to be a valuable resource for
grounding dialogue systems. The most common
approach involves integrating large, external knowl-
edge graphs to provide additional context and in-
formation that can enhance the dialogue’s quality
and relevance (Liu et al., 2019; Tuan et al., 2019;
Zhang et al., 2020). While these approaches share
a similar objective with our work, they fundamen-
tally differ in that the knowledge graphs used are
independent of the dialogue content itself.

In contrast, other approaches leverage graphs to
represent the dialogue history, offering a structured
way to maintain and utilise past interactions (Xu
et al., 2020; Chen et al., 2023). This method en-

hances transparency, reduces the likelihood of hal-
lucinations, and improves the system’s ability to
manage long-term conversations (Baez Santamaria
et al., 2023). Our work aligns with this approach
by utilising a graph to capture and organise key
dialogue information, enabling more effective and
contextually grounded dialogue systems.

3 Shared Task description

A dataset of original bilingual customer support
conversations is provided. The language pairs avail-
able are English ⇌ German (en-de), English ⇌
Dutch (en-nl), English ⇌ French (en-fr), En-
glish ⇌ Brazilian Portuguese (en-pt_br), and En-
glish ⇌ Korean (en-ko). Due to our team’s lan-
guage expertise, we decided to focus on the first
four pairs.

4 System Overview

All our systems work with graphs extracted from
dialogues. We employ a multi-step process to ex-
tract entities and relationships from the dialogue
data and utilise these in various model settings. Our
primary submission, Triple-TowerInstruct, inte-
grates dialogue history into the translation process
at inference, leveraging contextual cues to enhance
performance across four language pairs. In addi-
tion to this, we explored an ablation study (Tow-
erInstruct without dialogue history) and a novel
model, GraphFlanT5, which combines graph and
text embeddings within a unified framework.

4.1 Pre-processing
For generating the graphs, we perform entity and
relation extraction by prompting GPT-4o. The
prompt used for this process (see Prompt 1) is de-
signed to extract relevant triples from the dialogue
data, capturing the essence of interactions in a struc-
tured format. The system is instructed to analyse
the dialogue and break it down into triples, each
consisting of a subject, predicate, and object. These
triples serve as the fundamental building blocks of
the graph, representing the interactions between
speakers.

In addition to extracting these triples, the prompt
also instructs the system to annotate each triple
with several attributes that provide deeper insights
into the nature of the interactions. These annota-
tions include:

• Sentiment: This attribute captures the emo-
tional tone of the interaction, with values rang-
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ing from -1 for negative sentiment, 0 for neu-
tral, and 1 for positive sentiment. This al-
lows us to understand the emotional context
in which the interaction takes place.

• Polarity: Polarity indicates whether the inter-
action involves a negation, affirmation, or is
neutral or questioning. It is coded as -1 for
negation, 0 for neutral or questioning, and 1
for affirmation. This helps in identifying the
stance or intent behind the speaker’s words
and keeps the predicates uniform across nega-
tion, statements and questions (e.g. "don’t
travel" and "travel" receive the same predicate
travel with different polarity scores)

• Certainty: This attribute is on a scale from
0 (uncertain) to 1 (certain), reflecting the
speaker’s confidence or the definitiveness of
the statement. This helps in distinguishing
between statements of fact and those that are
speculative or uncertain and can subsequently
be used by the model to communicate cer-
tainty about its knowledge more effectively.

• Dialogue Act: Dialogue acts categorise the
type of speech act being performed, with pre-
defined categories such as greeting, farewell,
negative reaction, positive reaction, concern,
query, and others.

4.2 Approach 1: Triple-TowerInstruct

In our first approach, we use the TowerInstruct-7B-
v0.22 model, a variant of the Tower (Alves et al.,
2024) family specifically designed for translation-
related tasks.

TowerInstruct-7B-v0.2 is based on the LLaMA-
2 architecture, which has been extended through
additional pretraining and fine-tuning to enhance its
multilingual capabilities, outperforming other open
models of similar scale. The model’s foundation,
TowerBase, was developed by continuing the pre-
training on a diverse multilingual dataset across 10
languages (including Dutch, German, French, and
Portuguese) incorporating both monolingual and
parallel data to improve translation quality. Sub-
sequently, TowerInstruct was fine-tuned using the
TowerBlocks dataset, which includes a broad range
of translation-related tasks and, relevant for the task

2https://huggingface.co/Unbabel/
TowerInstruct-7B-v0.2.

of chat translation, multi-turn dialogue data from
UltraChat (Ding et al., 2023). This fine-tuning pro-
cess tailored the model specifically for translation
workflows, making it adept at handling complex,
multilingual interactions.

Prompt 1: Triple extraction with GPT-4o

system_prompt =
You will analyze a dialogue and break it down
into triples consisting of a subject, predicate,
and object. Each triple should capture the
essence of interactions between speakers.
Additionally, annotate each triple with:
- Sentiment (-1 for negative, 0 for neutral,
1 for positive)
- Polarity (-1 for negation, 0 for neutral/
questioning, 1 for affirmation)
- Certainty (a scale between 0 for uncertain
and 1 for certain)
- Dialogue act (

0 : "greeting",
1 : "farewell",
2 : "negative_reaction",
3 : "positive_reaction",
4 : "concern",
5 : "query",
6 : "other")

Ensure that predicates are semantically
meaningful. Separate multi-word items with
an underscore.

Save it as a JSON with this format:
{
"Conversation ID": "60250de4b",
"dialogue": [

{
"sender": "customer",
"text": "I can't find my order. It was
supposed to arrive yesterday.",
"triples": [
{

"subject": "I",
"predicate": "cannot_find",
"object": "my_order",
"sentiment": -1,
"polarity": -1,
"certainty": 1,
"dialogue_act": 4

},
{

"subject": "It",
"predicate": "was_supposed_to_arrive",
"object": "yesterday",
"sentiment": -1,
"polarity": 1,
"certainty": 0.7,
"dialogue_act": 4

}]},
{

"sender": "agent",
"text": "I will help you with that.",
"triples": [
{

"subject": "I",
"predicate": "will_help",
"object": "you_with_that",
"sentiment": 1,
"polarity": 1,
"certainty": 1,
"dialogue_act": 3

}]}]}

user_prompt = f"Analyze the following con-
versation with ID {conversation_id}:
{conversation_text}"

Triple-TowerInstruct During inference, we
merge the triple-based dialogue history, generated
in the pre-processing stage (see Section 4.1), with
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Input text
HS: In the West, women have legal equality, equal rights, and are protected 
from discrimination: they should stop busting our balls and whining.
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S1: Women should stop whining: there are no professions barred to 

them in Western Society.
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Counter-narrative: Are 
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male truck drivers. It's still 
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Figure 2: Approach 2: GraphFlanT5

the current source sentence. This combined input,
which encapsulates both the conversational con-
text and the immediate translation task, is then fed
into the model to ensure that the output accurately
reflects the dialogue’s ongoing flow and context.

As an ablation, we also evaluated the model’s
performance without providing dialogue history
graphs.

4.3 Approach 2: GraphFlanT5
We have developed a unified framework named
GraphFlanT5 (see Figure 2), which integrates both
graph and text input into a single architecture, sim-
ilar to (Yao et al., 2023). This model is designed to
generate target sequences in text based on the dia-
logue history and the source sequence represented
in text and graph forms.

As further preprocessing for this approach, we
use spaCy’s NeuralCoref3 to resolve co-references,
limiting the number of nodes to a maximum of 100.
These are then represented as an adjacency matrix
and fed into the main model.

To encode the graph, we employ a Graph At-
tention Network (GAT) (Veličković et al., 2018)
with a single attention layer, followed by a dense
layer and normalization. On the text side, we use a
Transformer encoder for encoding. We specifically
used FlanT5-base4 for its multilingual capabilities.
After obtaining the encoded features from both the
graph and text, we apply cross-attention to align
the text representation with the graph representa-
tion. A gated fusion mechanism (Wu et al., 2021)
is then used to combine the outputs of the cross-
attention. Finally, the fused features are passed
into the Transformer decoder to generate the final
textual answer.

We fine-tuned our model for 25 epochs with a
learning rate of 5e-5 and a weight decay of 0.05.

3https://github.com/huggingface/neuralcoref
4https://huggingface.co/google/flan-t5-base

Training was conducted using mixed precision on
two A10 GPUs.

5 Results & Discussion

5.1 Automated Metrics

Our primary submission, Triple-TowerInstruct, and
its ablation variant without dialogue history graphs
(NH) are compared against our second approach
GraphFlanT5, the baseline (NLLB-200’s (Team
et al., 2022) 3.3B variant5), and the top-performing
Unbabel system, using COMET-22 (Rei et al.,
2022), Contextual-COMET-QE (Vernikos et al.,
2022), BLEU (Papineni et al., 2002), and ChrF
(Popović, 2015) scores 6.

Tables 1 and 2 show the results from our exper-
iments across four language pairs: en-de, en-nl,
en-nl, and en-pt_br. While we only submitted
Approach 1 (Triple-TowerInstruct), we include the
evaluation of the other approaches which were con-
ducted after the shared task submission deadline.
From the submitted approach, our team ranked sec-
ond place for en-nl and en-fr, and third place for
en-pt_br and en-de on the COMET-22 (Rei et al.,
2020a) score.

Triple-TowerInstruct performed well across all
language pairs, consistently outperforming the
baseline based on COMET and in the majority
of instances for the other metrics. For instance,
in the en-de task, Triple-TowerInstruct achieved
a COMET score of 91.3, outperforming the base-
line’s 89.8. The BLEU and ChrF scores further sup-
port this, with Triple-TowerInstruct scoring 53.0 in
BLEU and 71.9 in ChrF for en-de, both above the
baseline scores of 51.1 and 70.8, respectively. The

5https://huggingface.co/facebook/nllb-200-3.
3B

6Sacrebleu is used for the implementation of BLEU and
ChrF (Post, 2018).
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Model en-de en-nl

COMET ChrF BLEU Context-
COMET-
QE

COMET ChrF BLEU Context-
COMET-
QE

Triple-TowerInstruct 91.3 71.9 53.0 0.2039 90.9 70.6 48.0 0.0816

TowerInstruct NH 91.2 72.2 53.9 0.2128 91.3 66.2 44.7 0.1982

GraphFlanT5 85.3 65.1 44.5 0.0120 88.4 68.5 48.7 0.0697

Baseline 89.8 70.8 51.1 0.1730 88.1 62.6 38.7 0.0873

Unbabel+it 92.9 78.2 62.0 0.2526 93.6 79.8 63.9 0.1167

Table 1: Translation Results for German (en-de) and Dutch (en-nl). NH models refer to ablations without dialogue
history. Results for the baseline and best performing system in the task (Unbabel+it) are included for comparison.

Model en-fr en-pt

COMET ChrF BLEU Context-
COMET-
QE

COMET ChrF BLEU Context-
COMET-
QE

Triple-TowerInstruct 91.6 75.7 58.8 0.0775 91.3 66.8 45.3 0.1909

TowerInstruct NH 91.7 75.2 57.9 0.0756 90.6 71.0 50.9 0.0686

GraphFlanT5 85.8 67.4 47.0 -0.1007 90.4 75.0 56.7 -0.0095

Baseline 90.1 76.2 58.7 0.0101 86.2 62.2 35.3 -0.0613

Unbabel+it 92.8 79.8 65.7 0.1034 93.9 79.7 65.0 0.2367

Table 2: Translation Results for French (en-fr) and Portuguese (en-pt). NH models refer to ablations without
dialogue history. Results for the baseline and the best performing system in the task (Unbabel+it) are included for
comparison.

NH variant, which omits dialogue history, saw a mi-
nor drop in performance for en-de and en-pt_br,
with a drop in COMET score of 0.1 and 0.7 re-
spectively, and slightly lower BLEU and ChrF
scores. Interestingly, the opposite is true for the
en-nl and en-nl language pairs. The Context-
COMET-QE scores (Rei et al., 2020b), which are
intended for reference-free machine translation
evaluation and trained to reflect human judgements
of the quality of translations, also demonstrated
variability. For en-de, Triple-TowerInstruct scored
0.2039 in Context-COMET-QE (Rei et al., 2020b),
while the NH variant scored 0.2128, showing a
slight improvement when dialogue history was re-
moved. While for en-pt_br including the history
increased the score by 0.03837. We also observed
that COMET-based metrics and n-gram matching
metrics (ChrF and BLEU) disagreed in ranking our

7See Kocmi et al. (2024) for an explanation of the different
dynamic ranges of the mentioned metrics.

TowerInstruct variants. When COMET favoured
one variant, the n-gram metrics ranked it lower, and
vice-versa. Underscoring the importance of using
a combination of metrics, as relying on a single
metric could give an incomplete picture of model
performance.

GraphFlanT5 which integrates graph and text
input within a unified framework, showed moderate
results and did not outperform our TowerInstruct
variants or the baseline in most cases. In the en-de
task, GraphFlanT5 recorded a COMET score of
85.3, lower than both TowerInstruct and the base-
line. Its BLEU and ChrF scores were also lower,
at 44.5 and 65.1, respectively. However, in some
tasks like en-nl, GraphFlanT5 performed compet-
itively with a BLEU score of 48.7, suggesting that
the integration of graph representations may offer
benefits in certain contexts, but requires further
optimisation to be competitive to more traditional
approaches.
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Model en-de en-nl

Formality Lexical
Cohesion

Pronouns Verb
Form

Formality Lexical
Cohesion

Pronouns Verb
Form

Triple-
TowerInstruct

86.3 74.1 78.5 – 35.5 66.4 – 40.0

Baseline 79.4 76.0 79.1 – 53.0 57.4 – 35.7

Unbabel+it 88.6 82.9 70.5 – 93.9 87.7 – 54.5

Table 3: F1 Scores for German (en-de) and Dutch (en-nl) across different evaluation dimensions of MUDA. Where
entries are left blank, the metric does not evaluate the language for that dimension.

Model en-fr en-pt

Formality Lexical
Cohesion

Pronouns Verb
Form

Formality Lexical
Cohesion

Pronouns Verb
Form

Triple-
TowerInstruct

89.6 78.6 88.6 68.1 78.7 88.5 55.0 –

Baseline 86.9 82.1 82.0 70.2 45.7 81.0 55.8 –

Unbabel+it 91.3 90.2 92.9 74.2 88.0 95.5 74.4 –

Table 4: F1 Scores for French (en-fr) and Portuguese (en-pt) across different evaluation dimensions of MUDA.

5.1.1 MUDA

Tables 3 and 4 present the F1 scores for different
evaluation dimensions—Formality, Lexical Cohe-
sion, Pronouns, and Verb Form—of the Multilin-
gual Discourse-Aware (MuDA) benchmark (Fer-
nandes et al., 2023). We compared our primary
model, Triple-TowerInstruct, against the baseline
and the top-performing system, Unbabel+it. MuDA
is designed to systematically evaluate machine
translation models on their handling of discourse
phenomena that require context. Unlike traditional
metrics that focus broadly on translation accuracy,
it specifically targets the model’s ability to correctly
translate discourse elements, such as pronouns and
verb forms, that depend heavily on the surrounding
context.

The performance of our model varied across dif-
ferent dimensions and language pairs, outperform-
ing the baseline in 7 out of 13 cases. Overall, it
demonstrated relatively strong performance on the
Formality dimension, achieving competitive F1
scores in language pairs such as en-de, en-nl, and
en-pt_br, with a notable increase of 33 points
over the baseline for the latter. The exception was
the en-nl pair, where the model’s formality score

was notably lower compared to both the baseline
and top-performing systems, indicating a need for
targeted improvements in handling formality spe-
cific to Dutch translations. However, performance
on Lexical Cohesion, Pronouns, and Verb Form
was less consistent across language pairs, with the
model outperforming the baseline in only half of
the cases.

5.2 Human Evaluation
Human evaluation confirms that our approach out-
performs the baseline, and ranked second place for
en-nl and en-fr, and third place for en-pt_br
and en-de across all submitted approaches.

en-de en-nl en-fr en-pt

Triple-
TowerInstruct

78.6 84.37 73.32 69.85

Baseline 74.5 53.07 67.81 56.37

Unbabel+it 84.22 92.22 79.62 78.0

Table 5: Human Evaluation Scores on document level
for German (en-de), Dutch (en-nl), French (en-fr), and
Portuguese (en-pt) across models.
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The human evaluation was facilitated by the task
organisers. It was conducted by professional lin-
guists and translators using a combination of Direct
Assessment and scalar quality metric (DA+SQM)
implemented via the Appraise framework (Feder-
mann, 2018).

6 Conclusion & Future Work

Our results underscore the importance of incorpo-
rating dialogue history in improving translation
quality, highlighting its role in maintaining coher-
ence and context throughout chat-based transla-
tions. The integration of graph-based representa-
tions also shows promise, particularly in capturing
and leveraging the structural relationships within
dialogue contexts. However, our findings indicate
that further optimisation is required to fully realise
the benefits of this approach, especially in terms
of consistently outperforming more traditional text-
based models.

In future work, one of our key objectives is to
combine the strengths of TowerInstruct’s transla-
tion capabilities with the advanced context mod-
elling offered by our graph-based approach. By
integrating these two methodologies, we aim to
create a more robust system that can better handle
the complexities of chat dialogue translation.

Furthermore, we plan to investigate the incorpo-
ration of additional contextual information, such
as certainty or sentiment scores derived during pre-
processing. These scores could potentially enhance
the model’s ability to weigh different parts of the di-
alogue based on their reliability and emotional tone,
thereby improving overall translation accuracy. By
factoring in sentiment, the model can better pre-
serve the nuances of emotional expression within
the conversation, leading to more contextually ap-
propriate translations, which is particularly impor-
tant in the task’s customer service domain where
frustration is common. By pursuing these direc-
tions, we aim to refine our models further, making
them more adaptable and effective in real-world
chat translation and dialogue tasks.
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