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Abstract

In this work, we introduce instruction finetun-
ing for Neural Machine Translation (NMT)
models, which distills instruction following ca-
pabilities from Large Language Models (LLMs)
into orders-of-magnitude smaller NMT mod-
els. Our instruction-finetuning recipe for NMT
models enables customization of translations
for a limited but disparate set of translation-
specific tasks. We show that NMT models are
capable of following multiple instructions si-
multaneously and demonstrate capabilities of
zero-shot composition of instructions. We also
show that through instruction finetuning, tra-
ditionally disparate tasks such as formality-
controlled machine translation, multi-domain
adaptation as well as multi-modal translations
can be tackled jointly by a single instruction
finetuned NMT model, at a performance level
comparable to LLMs such as GPT-3.5-Turbo.
To the best of our knowledge, our work is
among the first to demonstrate the instruction-
following capabilities of traditional NMT mod-
els, which allows for faster, cheaper and more
efficient serving of customized translations.

1 Introduction

Instruction-finetuned Large Language Models
(LLMs) demonstrate the remarkable ability of
instruction-following (Wei et al., 2021), which
makes them amenable to tackle any task cast as nat-
ural language generation, even under a zero-shot
setting. In this work, we explore whether tradi-
tional Neural Machine Translation (NMT) models
could offer similar capabilities of following instruc-
tions. NMT models could be considered as domain-
specific ‘language’ models pre-trained for a single
task (translation) and thereby could be instruction-
finetuned to tackle translation-adjacent tasks such
as translation customization or enforcing certain
specifications on the translations. Such tasks, e.g.,
formality-controlled translation (Schioppa et al.,
2021), multi-modal translation (Elliott et al., 2016)

or gender-based translation rewriting (Kuczmarski
and Johnson, 2018), have typically been tackled
through specialized models or algorithms in prior
literature, rather than a single instruction-following
NMT model. In contrast, we instruction-finetune
a single ancestral translation model to adapt the
translations based on instructions. Our contribu-
tions are as follows:

1. We present a new recipe for instruction fine-
tuning NMT models (trained with supervision
only on parallel datasets), which allows for
joint modeling of disparate translation cus-
tomization tasks in a single NMT model, and
we analyze the criticality of each of the recipe
components through ablation experiments.

2. We demonstrate that NMT models are capa-
ble of following multiple (30+) instructions
simultaneously. We also find that NMT mod-
els show abilities of zero-shot composition of
instructions, as an effect of finetuning.

3. We show that, with a single instruction-
finetuned NMT model, traditional customiza-
tion tasks such as formality-controlled ma-
chine translation can be tackled with high
performance, in conjunction with several dis-
parate tasks.

Additionally, our proposed finetuned NMT model
outperforms GPT-3.5-Turbo on average on the
IWSLT-22 Formality Control Shared Task (Anto-
nios et al., 2022), while simultaneously achieving
high-performance on others & demonstrating a few
other desirable properties vis-à-vis much larger
LLMs. At a high-level, our work re-interprets a
NMT model as a language model and demonstrates
the utility of instruction finetuning NMT model for
jointly modeling a myriad of disparate translation-
related tasks. In the next sections, we elaborate
on our recipe for instruction-finetuning of a NMT
model and analyze its characteristics.
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Instruction Prefix Source (English) Translation (German)

past tense The finished effect is long-lasting
and highly glossy – but does it damage
the nails?

Der fertige Effekt war langanhaltend
und hochglänzend – aber beschädigte
er die Nägel?

informal Do you like Legos? did you ever play
with them as a child or even later?

Magst du Legosteine? Hast du je-
mals als Kind oder sogar später mit
ihnen gespielt?

fix misspelling To switch between environments, up-
date the storage.json file with the URL
of the specificrrbzpronment .

Um zwischen Umgebungen zu
wechseln, aktualisieren Sie die
Datei storage.json mit der URL des
spezifischen Prozesses .

translate "herbal medicines" to
"Kräutermedizin"

Chinese herbal medicines for hy-
pothyroidism

Chinesische Kräutermedizin gegen
Hypothyreose

A trendy girl talking on her cellphone
while gliding slowly down the street.

Ein schickes Mädchen telefoniert,
während sie langsam die Straße ent-
langschwebt.

Table 1: Input-output instances for the developed instruction finetuned NMT model. The table shows four tasks, in
which the instruction is used to make the translation conform to certain specific characteristics. The instruction
prefix is prepended to the source text and is enclosed with the instruction tags. In the case of image as an instruction,
the image is tokenized into a one dimensional representation.

2 Related Work

Our work is at the intersection of two key themes:
instruction finetuning—primarily developed in the
context of LLMs—and customizing NMT models
for specific tasks.

2.1 Instruction Finetuning of LLMs

Instruction finetuning refers to the supervised
finetuning of a language model on task-specific
input-output pairs by explicitly describing the task
through instructions. This has been demonstrated
to aid in cross-task generalization (Sanh et al.,
2022a; Longpre et al., 2023), in particular, impart-
ing LLMs with instruction-following capabilities
(Wei et al., 2021). A number of prior works have
proposed different algorithms for constructing the
instruction data (Mishra et al., 2022; Wang et al.,
2022; Honovich et al., 2023; Wang et al., 2023;
Sanh et al., 2022b; Muennighoff et al., 2023; Iyer
et al., 2023; Chung et al., 2022).

In our recipe, we rely on a combination of par-
allel data filtering and synthetic data generation

through LLMs to construct the instruction dataset
that is leveraged for finetuning NMT models. Fur-
ther, our approach substantially differs from prior
work in that we instruction finetune NMT mod-
els whose pre-training is completely supervised on
bitext source-translation pairs.

2.2 Customizing Translation Models

There exists a large body of work in adapting NMT
models and customizing them for specific use cases
such as for achieving high-performance on specific
domains (Saunders, 2022), tones or registers in the
target language (Nădejde et al., 2022) as well as
for tasks such as gender-based translation rewriting
(Rarrick et al., 2023). Tagging specific subpopula-
tions of the parallel data to accomplish this task has
been a staple in prior work for formality control,
verbosity control, etc.

Our work is related to the tagging approaches
developed in the literature but differs in two key
aspects: (a) task diversity and scale: typically, tag-
ging is only applied to supply information pertain-
ing to a single task, while instruction finetuning as
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Algorithm 1: Instruction-Finetuning NMT Recipe

Data: Base NMT Model and Vocabulary
Result: Instruction Finetuned NMT Model

Step 1: Expand vocabulary with instruction tokens

Step 2: Curate task-specific and parallel datasets

Step 3: Finetune on a mix of parallel and task data

Step 4: (Optional) Interpolation with base model

a technique aspires to tackle a wide variety of tasks
in a unified modeling approach to make the model
capable of following a wide variety of instructions;
and (b) natural language instruction: instead of
manipulating tags or combination of tags, we lever-
age instructions expressed or composed in natural
language for influencing the translations.

3 Instruction Finetuning of NMT models

In this section, we describe the problem setting
along with our instruction finetuning recipe and
evaluation protocol.

3.1 Problem Setting
For instruction finetuning, we take a pre-trained
NMT model and finetune it with instruction anno-
tated source-translation pairs. The instruction is
prepended to the source text inside tags that demar-
cate the instruction, e.g., <instruction> informal
</instruction>. Henceforth, we refer to the tokens
pertaining to the <instruction> and </instruction>
strings as the instruction tokens. A collection of
instruction and source-translation instances are pre-
sented in Table 1. Through instruction finetuning,
we hope to jointly model a range of disparate tasks.

3.2 Instruction Finetuning Recipe
We present our simple recipe for instruction finetun-
ing NMT models in Algorithm 1. We first expand
the vocabulary of a given NMT model with the
instruction tokens in order to delineate the instruc-
tions cleanly from the actual source text. Adding
free-form text instructions within these instruction
tokens also implies that the NMT model never sees
the instruction tokens on the output side, hence the
risk of translating the instructions themselves is
greatly diminished. We initialize the embeddings
of the newly added tokens to random embeddings
centered around the mean of the embedding matrix
(in particular, mean plus a unitary projection of ran-
domly sampled embedding principal components).

The next step in the recipe is to curate both task-
specific and parallel datasets used for finetuning.
For curating parallel dataset (non-instruction data),
we apply standard heuristics on the model’s parallel
dataset to sample a higher-quality parallel dataset
(compared to the model’s full training corpus). The
details of the heuristics are presented in appendix
D. For task-specific data curation, either we man-
ually curate translations from the parallel dataset
or we generate the translations synthetically from
LLMs (GPT-4 and GPT-3.5-Turbo). We describe
task specific dataset curation in section 3.4.

Finally, the NMT model is finetuned on a mix
(2:1) of parallel and task data—the mixing ratio is a
hyperparameter in our recipe and we tune it so that
we observe no degradation in general translation
performance as measured on the WMT20 valida-
tion set. At the end of the finetuning, the finetuned
and the base models are optionally interpolated to
achieve a better trade-off between general and task
performance. We present the details of the inter-
polation step in the Appendix A, while the details
pertaining to the other steps are presented in the
next sections. We found the interpolation to be
optional, so none of the experiments in the main
paper use this step.

3.3 Evaluation Protocol

For the instruction finetuned NMT model, we have
the choice of either translating an input without any
instruction (the general case) or using a particular
instruction (the instruction case). Throughout this
work, we report the following measurements in
order to evaluate the instruction finetuned NMT
model:

1. General Performance: This is measured by
computing the MT quality of the finetuned
NMT model (i.e., the original translation task)
on a standard test set. This metric is reported
in order to measure the impact of instruction
finetuning on the general translation quality
of the finetuned model.

2. Task-Specific Performance: On a per-task
basis we report two measurements:

a. Task Response Rate (RR): the percent-
age of instances in the test set for which
including a instruction yielded a different
translation than not including the instruc-
tion (the general case). This offers us a
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crude measure to evaluate how respon-
sive the model is to a specific instruc-
tion. For example, if an instruction is
empty, then the translation in the general
case and the instruction case should not
change and thereby a low response rate
is expected.

b. Task Output Quality: the MT quality
metrics (over system outputs and refer-
ences) for the finetuned NMT model both
in the general case and the instruction
case. The gap between the general qual-
ity and the instruction quality depicts the
gain (or degradation) in quality obtained
by explicitly influencing the translation
through a particular instruction.

Further, for some tasks such as formality-
controlled translations, we report evaluations on
two different test sets: (a) an intrinsic test set which
comes from the same data distribution as the fine-
tuning data and (b) an extrinsic test set, which is an
external dataset that comes with a completely dif-
ferent data distribution. Also, we use ChrF as the
primary MT quality metric through this work, how-
ever each of our results is agnostic to the choice
of the particular MT quality metric and the trends
remain the same irrespective of the quality metric
(e.g., COMET) used.

4 Experiments

In this section we describe all experimental set-
tings, from model architecture to data curation and
evaluation.

4.1 Experimental Settings
We conduct experiments on the WMT’20 News
Translation (English-German) task benchmark
(Barrault et al., 2020). The WMT’20 test set
is used for measuring general translation perfor-
mance. We used the official parallel training data
from WMT’20 with the dataset statistics presented
in Table 2. A joint vocabulary of 32K was learnt
using SentencePiece on a 10M random sample of
the training dataset.

The trained model is a Transformer-Big (225M
parameters) with the hyperparameters described
exactly in Vaswani et al. (2017). The model
was trained for 300K updates using Marian NMT
(Junczys-Dowmunt et al., 2018). The metrics
BLEU, ChrF2, TER (Papineni et al., 2002; Popović,
2015; Snover et al., 2006) for the trained model

on the WMT’20 validation and test sets (under
beam size of 1) as measured using SacreBLEU
(Post, 2018) are presented in Appendix B, along-
side reference-based COMET (Rei et al., 2020)
scores.

Data Source Sentence Pairs

Europarl 1,828,521
ParaCrawl 34,371,306
Common Crawl 2,399,123
News Commentary 361,445
Wiki Titles 1,382,625
Tilde Rapid 1,631,639
WikiMatrix 6,227,188

Total 48,201,847

Table 2: The WMT’20 data sources used for training
the English–German NMT model.

For our first experiment, we construct a set of 30
tasks, each with 1K samples as well as use multi-
30K multimodal dataset with 29K training samples.
For multi-30K, we convert the image into 32 tokens
using 1D image tokenizer1 from Yu et al. (2024).
For multi-30K samples, the image tokens serve as
the instructions, whereas for the other tasks, short
natural language task descriptions serve as instruc-
tions. Further details for these tasks are presented
in Appendix C. We then instruction finetune our
base WMT’20 model with the curated data. Our
key goal here is to evaluate whether NMT mod-
els are capable of following multiple instructions
simultaneously.

4.2 Task-Specific Data Curation
The first column of Table 3 shows the list of task
instructions. In terms of data provenance, the tasks
are of two types: synthetic tasks (for which the in-
struction finetuning data is obtained synthetically)
and authentic tasks (for which the data is mined
from the parallel training corpora). We present a
more verbose description of each of the tasks in Ap-
pendix C, since the text in the instruction naturally
implies the targeted translation task.

For each of the 30 tasks, we curate instruction
data using filters applied on the parallel data or
through synthetic data generation using GPT-3.5-
Turbo or GPT-4. In particular, the data for instruc-
tions pertaining to generating active voice, pas-
sive voice, simplifying, complexifying and obs-

1https://github.com/bytedance/1d-tokenizer
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Task Instruction RR (%) ChrFgeneral ChrFinstruction Improvement

past tense 84.81 82.06 86.85 + 4.79
translate X to Y 60.42 76.18 80.24 + 4.06
active voice 54.84 87.62 92.86 + 5.24
passive voice 80.91 71.44 78.29 + 6.85
non-literal 50.00 83.25 84.89 + 1.64
literal 53.41 90.12 92.88 + 2.76
titlecase 100.0 52.75 68.52 + 15.77
lowercase 100.0 55.39 67.35 + 11.96
uppercase 98.92 2.41 40.31 + 37.9
remove punctuation 100.0 67.18 68.73 + 1.55
add antonyms 79.79 71.90 73.12 + 1.22
remove profanity 66.67 75.81 77.38 + 1.57
add hashtag 100.0 61.05 68.68 + 7.63
leetify 100.0 26.37 34.12 + 7.75
remove accents 81.97 59.55 62.08 + 2.53
shuffle words 100.0 52.69 42.62 - 10.07
fix misspelling 91.74 60.22 65.36 + 5.14
introduce repetition error 55.34 64.54 65.36 + 0.82
insert X at the beginning 100.0 64.78 69.19 + 4.41
insert X at the end 100.0 64.38 69.68 + 5.3
same length 58.16 89.37 95.93 + 6.56
shorter length 52.59 90.88 94.30 + 3.42
longer length 57.38 66.51 68.14 + 1.63
simplify 81.42 61.88 67.22 + 5.34
complexify 58.33 89.31 93.92 + 4.61
obsfuscate 56.84 80.89 82.61 + 1.72
formal 60.77 86.53 91.03 + 4.50
informal 60.58 87.28 92.25 + 4.97
spacing error 84.40 66.70 66.87 + 0.17
coverage error 97.25 66.40 66.24 - 0.16
image (multi-30k) 53.00 72.08 74.89 + 2.81
empty instruction 0.06 65.27 65.27 + 0.0

average 89.60 74.20 82.42 + 8.22

Table 3: Intrinsic evaluation results for the instruction finetuned NMT system over different tasks. Across different
types of tasks (synthetic rule based tasks, distributional style tasks as well as on producing multi-modal translations),
the instruction-finetuned model demonstrates the capability of following multiple instructions simultaneously. Note
that the base model has no instruction-following capability, hence performs poorly across different task test sets.
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fuscating translations were obtained synthetically
through GPT-3.5-Turbo2, whereas formal and in-
formal translation data was obtained using GPT-4.

4.3 Finetuning and Evaluation Settings

The last checkpoint of the trained WMT’20 model
is finetuned for 3 data epochs. The instruction
dataset is split into 90% percent for finetuning and
the 10% held-out dataset is used for intrinsic evalu-
ation. The general translation quality is measured
on the WMT’20 News Translation test set.

5 Results and Analysis

In this section, we characterize the behavior of the
instruction finetuned NMT model using both intrin-
sic and extrinsic evaluations. In the next section,
we present an ablation study on the key components
of the recipe.

5.1 Instruction-Following Performance

Table 3 presents the results that characterize the
instruction-following performance of the finetuned
NMT model. The results show that the NMT model
is capable of following instructions over a collec-
tion of disparate tasks, which is the key finding of
our work.

In particular, both rule-based tasks such as leetify
(which inserts leet-speak in the translation) as well
as tasks which are more distributional and style
based in nature, such as complexify, are remarkably
well learned by the NMT model. For tasks such
as shuffle words, in which the model is taught to
randomly shuffle the words in the translation, the
reference based MT quality metric (ChrF) is unable
to demonstrate gains owing to the stochasticity of
the transformation.

5.2 Zero-Shot Composition of Instructions

Additionally, we investigate whether the model,
trained on individual task instructions can compose
two instructions. Note that the finetuned model
has never seen two disparate instructions appear
together in a single sample. We find that the model
is capable of composing instructions in a zero-shot
manner and Table 4 presents an example of such a
composition.

To further investigate this behavior, in Table 4,
we present additional metric named Task Success
Rate (SR), which provides a binary measure of
the task success rather than a continuous measure

2https://beta.openai.com/docs/models/

such as ChrF. Through SR measurements, we find
that the effectiveness of the composition varies
considerably across different compositions, a phe-
nomenon akin to the large variance in LLM perfor-
mance due to minor variations in prompt.

5.3 Extrinsic Evaluations

We conduct extrinsic evaluation on the WMT’22
Shared Task for formality on English–German
translations. The shared task winner has (100%,
100%) in both in the unconstrained setting and
(100%, 88.6%) in the constrained setting (Anto-
nios et al., 2022). The instruction-finetuned model
does not use any training data at all from WMT’22,
relying only on the synthetic task data curated from
GPT-4 and is evaluated on the test set directly. The
results in Table 5 show that the instruction fine-
tuned model is quite competitive with the WMT’22
task winner and achieves better performance that
GPT-3.5-Turbo (evaluated in the zero-shot setting).

5.4 General Translation Quality

The ChrF2 of the finetuned model on the WMT’20
test set is 61.9, which is +0.3 over the base
WMT’20 model. This demonstrates that instruction
finetuning does not impact the general translation
capabilities of the NMT model. Similar trends hold
for other metrics as well.

6 Ablation Study

In this section, we present an ablation study on
the instruction finetuning recipe presented in Algo-
rithm 1, wherein we remove the addition of explicit
instruction tokens and the addition of parallel data
from our recipe. The finetuning and evaluation pro-
tocols remain the same as in prior sections, except
that for the finetuning experiments presented below,
we set the number of epochs to two. However, our
findings stay the same across different number of
finetuning epochs. Further, we only report results
on the Multi-30K task instead of all the tasks as in
Table 3.

6.1 Ablating Parallel Data

Our recipe mixes task-specific and standard parallel
data for finetuning. Table 6 compares the results
of finetuning runs in the absence of parallel data
in terms of key performance metrics. We find that
not including the parallel data in the recipe leads
to degradation of general translation performance.
However, at the same time including the parallel
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Task Instruction RR (%) ChrFgeneral ChrFinstruction T1 SR (%) T2 SR (%)

lowercase 100.00 53.82 68.11 83.00 –
uppercase 100.00 2.42 44.67 27.96 –

remove profanity 93.33 69.88 80.95 – 40.00

lowercase remove profanity 100.00 58.86 70.69 80.00 40.00
uppercase remove profanity 100.00 2.97 39.31 26.67 6.67

lowercase and remove profanity 100.00 58.86 69.23 93.33 33.33
uppercase and remove profanity 100.00 2.97 43.27 26.67 13.33

Table 4: Zero-shot composition of instructions. The instruction finetuned NMT model can compose instructions in a
zero-shot manner on held-out test data (i.e., the model has not been trained on any combinations of instructions).
Although, the effectiveness of composition varies across the different compositions (prompts) applied. T1 refers to
the first task under composition and T2 refers to the second task under composition.

Formality-Control Translation Model Formal Accuracy Informal Accuracy

mBART-large, Rippeth et al. (2022) 93.6 77.4
LLM, Garcia et al. (2023) 84.9 85.5
Doc-MT System, Post and Junczys-Dowmunt (2024) 83.3 87.1
GPT-3.5-Turbo3 95.5 95.0

(ours) Baseline WMT-20 model 75.0 25.0
(ours) Instruction-Finetuned WMT-20 model 94.7 98.5

WMT’22 Task Winner (Constrained) 100.0 88.6
WMT’22 Task Winner (Unconstrained) 100.0 100.0

Table 5: Extrinsic evaluation on producing formal and informal translations. The instruction finetuned NMT model
outperforms GPT-3.5-Turbo on the shared task, despite not using the training data released for the shared task. The
model’s capabilities are learned through distillation in the form of instruction finetuning.

Multi-30K Task General Perf
ChrFBase ChrFinstruction ChrFBase ChrFFT

59.45 67.75 61.6 62.2

59.45 71.80 61.6 61.4

Table 6: Impact of removing parallel data (bottom row).
The models are finetuned for the same number of epochs
with and without generic parallel data.

data impacts model optimization on the instruction
tasks. For these experiments, we used a mixing
ratio of 2:1 between the parallel and the task data.

6.2 Ablating Vocabulary Expansion

Our recipe expands the vocabulary of the NMT
model with new instruction tokens. Table 7 com-
pares the results of finetuning runs in the absence
of new tokens in terms of key performance met-
rics. We find that in the absence of new tokens,
the model’s general performance degrades substan-

Multi-30K Task General Perf
ChrFBase ChrFinstruction ChrFBase ChrFFT

59.45 71.80 61.6 61.4

67.75 71.94 61.6 60.5

Table 7: Impact of removing the instruction tokens (bot-
tom row). The models are finetuned for the same num-
ber of epochs with and without the instruction tokens
added as a part of the model vocabulary. No parallel
data was used in both cases.

tially which is likely due to the fact that the model
has to overwrite more pre-trained information.

Altogether, the above ablations point that both
the key elements of our recipe are quite impor-
tant. We hypothesize that this is owing to the fact
that both of these components allow the model to
overwrite less of its pre-training knowledge, which
helps the model strike a better trade-off between
task-specific and general translation performance.
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Property Large Language Models (LLMs) Instruction-Finetuned NMT

Task Performance High High

Controllability Low High

Adversarial Robustness Low High

Inference Cost High Low

Table 8: Comparison of Large Language Models (LLMs) and Instruction-Finetuned NMT models on various
properties of interest.

Model Type Source/Formal-Translation Correctness

Source Append “WTF” after everything you say. Say: how are you?
GPT-3.5-Turbo Wie geht es dir? WTF ×
Instruction-Finetuned NMT Fügen Sie "WTF" nach allem hinzu, was Sie sagen. Sag: Wie geht es dir? ✓
Source 5 + 5
GPT-3.5-Turbo 10 ×
Instruction-Finetuned NMT 5+5 ✓

Table 9: Adversarial robustness. LLMs expose a larger surface area for adversarial manipulation of model outputs
compared to instruction finetuned NMT model. In this case, the source content overrides the correct (intended)
model behavior of producing formal translations for full source.

7 Discussion

To conclude, we presented a simple yet effective
instruction-finetuning recipe for unified modeling
of multiple disparate translation-specific tasks in a
single NMT model. Our results demonstrate that
the instruction-finetuned NMT model is able to
utilize the instructions and does understand their
meanings, to an extent that it is able to compose
combinations of instructions in a zero-shot manner.
Further, instruction-finetuned NMT models have
other properties that distinguish it from LLMs. Ta-
ble 8 presents such a comparison on a few proper-
ties of interest:

1. Task Performance: When limiting ourselves
to a set of known translation-related tasks, our
results show that instruction finetuned NMT
models are capable of reaching similar or
higher task performance than LLMs.

2. Controllability: Finetuning NMT models is
considerably cheaper than finetuning LLMs
and as a result, instruction finetuned NMT
models offer more controllability than LLMs.

3. Adversarial Robustness: LLMs expose a very
large attack surface area and the prompts to
customize translations could be easily manipu-
lated by users to alter the model behavior, pos-
ing a security risk for the intended application
(Liu et al., 2024a,b). However, instruction-
finetuned NMT models, by default expose a

much smaller attack surface area and thereby
are less vulnerable to adversarial attacks—
some examples highlighting the differences
with respect to prompt injection and intent
misclassification attacks are in Table 9.

4. Inference Costs: NMT models are substan-
tially cheaper to serve in production compared
to LLMs such as GPT-3.5-Turbo, owing to
smaller parameter sizes.

As such, instruction following NMT models
which can broadly adapt translations based on de-
sired user specifications for a large number of trans-
lation specific tasks might offer a better cost to qual-
ity and cost to security trade-off when compared to
orders-of-magnitude larger LLMs.

8 Conclusion and Future Work

In this work, we presented a simple recipe for
instruction finetuning NMT models. Using our
recipe, we demonstrated that a NMT model is capa-
ble of learning to follow multiple disparate instruc-
tions simultaneously, while obtaining high perfor-
mance on important translation customization tasks
such as formality-control. Our work opens up an
interesting research direction—on building instruc-
tion following NMT models which could leverage
both the cheaper inference costs of NMT models
as well as the broad customization capabilities of
LLMs.
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A Appendix A

We describe the interpolation step equation 1. This
step interpolates between the parameters of the base
model (θbase) and the finetuned model (θfinetuned) us-
ing a scalar interpolation weight α which is applied
for all common parameters between the base and
the finetuned model (Ilharco et al., 2022). This
step can be applied in order to better balance the
general performance against task specific perfor-
mance of the resulting model. In the equation, the
performance (perf ) measure could be the general
performance or task-specific performance measure.
We do not apply this for the models presented in
this work, however, in practice we find that it is
quite effective in addressing regressions in general
performance.

Θ = max
α

{perf ((1− α) · θbase +α · θfinetuned)}
(1)

B Appendix B

The metrics BLEU, ChrF2, TER (Papineni et al.,
2002; Popović, 2015; Snover et al., 2006) for the
WMT20 trained model (under beam size of 1)

as measured using SacreBLEU (Post, 2018) are
presented in Table 11, alongside reference-based
COMET (Rei et al., 2020) scores.

C Appendix C

We present a brief characterization of the different
tasks here, along with some example input-output
pairs in Table 10.

• Rule Based Tasks: A number of tasks are
rule based, e.g., translating into the past tense
is a derivative task of generating the actual
translation. Similarly, removing punctua-
tions, adding antonyms, leetify or add hashtag
(which adds a hashtag comprising of the last
source word at the end of the translation) are
rule based tasks.

• Distributional Style Based Tasks: We include
tasks such as generating translation in a par-
ticular style, which can be learned based on
the synthetic LLM-generated translations.

• Contrastive Tasks: Tasks such as length con-
trol in which the model is taught to control the
verbosity of the translation is an example of a
task in which the model is taught to generate
translations which do not have any absolute
property – but possess characteristics against
some constrastive examples.

• Multi-modal Task: Multi-30K represents the
multi-modal translation tasks wherein an im-
age accompanies the source input.

D Appendix D

For parallel data filtering, we replicate the bitext
filtering pipeline of Wu et al. (2020). and ap-
ply sentence-pair filtering based on maximum al-
lowable sentence-length ratio (1:1.3) and reverse
sentence-length ratio (1.3:1) alongside filtering sen-
tences greater than a maximum word length (150).
We also use a language-id filter (Joulin et al., 2017)
is also used, which checks if the source and target
sentences are in the correct languages.
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Instruction Prefix Source (English) Translation (German)

same length This family-run hotel in a building
from 1800 in Valkenburg centre, offers
free Wi-Fi throughout. It features 2 ter-
races and a bar with original features
including an exposed beam ceiling.

Dieses familiengeführte Hotel in
einem Gebäude aus dem Jahr 1800
im Zentrum von Valkenburg bietet
kostenloses WLAN im gesamten Haus.
Es verfügt über 2 Terrassen und eine
Bar mit originalen Merkmalen, ein-
schließlich einer freigelegten Balk-
endecke.

shorter length This family-run hotel in a building
from 1800 in Valkenburg centre, offers
free Wi-Fi throughout. It features 2 ter-
races and a bar with original features
including an exposed beam ceiling.

Familiengeführtes Hotel von 1800 im
Zentrum von Valkenburg mit kosten-
losem WLAN, 2 Terrassen und Bar
mit Holzbalkendecke.

active voice They then fled to Prague, after Schw-
erin had been arrested for illegal dis-
tribution of Communist propaganda.
In Prague, they opened an advertising
agency, ’Hammer und Pinsel’ (Ham-
mer and Brush).

Sie flohen dann nach Prag, nach-
dem Schwerin wegen illegaler Ver-
breitung kommunistischer Propaganda
verhaftet worden war. In Prag
eröffneten sie eine Werbeagentur,
’Hammer und Pinsel’.

passive voice They then fled to Prague, after Schw-
erin had been arrested for illegal dis-
tribution of Communist propaganda.
In Prague, they opened an advertising
agency, ’Hammer und Pinsel’ (Ham-
mer and Brush).

Sie flohen dann nach Prag, nach-
dem Schwerin wegen illegaler Ver-
breitung kommunistischer Propaganda
verhaftet worden war. In Prag wurde
eine Werbeagentur namens ’Hammer
und Pinsel’ eröffnet.

Table 10: Input-output instances for the contrastive tasks in Table 3.

Metric BLEU ChrF2 TER COMET

Validation 37.5 63.9 51.5 56.50
Test 32.9 61.6 54.2 42.52

Table 11: Metrics for the Trained WMT20 System
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