@inproceedings{mynka-mikhaylovskiy-2024-tsu,
title = "{TSU} {HITS}{'}s Submissions to the {WMT} 2024 General Machine Translation Shared Task",
author = "Mynka, Vladimir and
Mikhaylovskiy, Nikolay",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Ninth Conference on Machine Translation",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wmt-1.13",
pages = "205--209",
abstract = "This paper describes the TSU HITS team{'}s submission system for the WMT{'}24 general translation task. We focused on exploring the capabilities of discrete diffusion models for the English-to-{Russian, German, Czech, Spanish} translation tasks in the constrained track. Our submission system consists of a set of discrete diffusion models for each language pair. The main advance is using a separate length regression model to determine the length of the output sequence more precisely.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mynka-mikhaylovskiy-2024-tsu">
<titleInfo>
<title>TSU HITS’s Submissions to the WMT 2024 General Machine Translation Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vladimir</namePart>
<namePart type="family">Mynka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikolay</namePart>
<namePart type="family">Mikhaylovskiy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the TSU HITS team’s submission system for the WMT’24 general translation task. We focused on exploring the capabilities of discrete diffusion models for the English-to-Russian, German, Czech, Spanish translation tasks in the constrained track. Our submission system consists of a set of discrete diffusion models for each language pair. The main advance is using a separate length regression model to determine the length of the output sequence more precisely.</abstract>
<identifier type="citekey">mynka-mikhaylovskiy-2024-tsu</identifier>
<location>
<url>https://aclanthology.org/2024.wmt-1.13</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>205</start>
<end>209</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TSU HITS’s Submissions to the WMT 2024 General Machine Translation Shared Task
%A Mynka, Vladimir
%A Mikhaylovskiy, Nikolay
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Ninth Conference on Machine Translation
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F mynka-mikhaylovskiy-2024-tsu
%X This paper describes the TSU HITS team’s submission system for the WMT’24 general translation task. We focused on exploring the capabilities of discrete diffusion models for the English-to-Russian, German, Czech, Spanish translation tasks in the constrained track. Our submission system consists of a set of discrete diffusion models for each language pair. The main advance is using a separate length regression model to determine the length of the output sequence more precisely.
%U https://aclanthology.org/2024.wmt-1.13
%P 205-209
Markdown (Informal)
[TSU HITS’s Submissions to the WMT 2024 General Machine Translation Shared Task](https://aclanthology.org/2024.wmt-1.13) (Mynka & Mikhaylovskiy, WMT 2024)
ACL