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Abstract

The NTTSU team’s submission leverages sev-
eral large language models developed through
a training procedure that includes continual
pre-training and supervised fine-tuning. For
paragraph-level translation, we generated syn-
thetic paragraph-aligned data and used these
data for training. In the task of translating
Japanese to Chinese, we focused on speech
domain translation. Specifically, we built Whis-
per models for Japanese automatic speech
recognition (ASR). Since the dataset used for
Whisper training contains many noisy data
pairs, we combined the Whisper outputs us-
ing ROVER (Fiscus, 1997) to refine the tran-
scriptions. Furthermore, we employed forward
translation from audio as data augmentation,
using both ASR models and a base transla-
tion model. To select the best translation from
multiple hypotheses of the models, we applied
Minimum Bayes Risk decoding after Quality
Estimation (Fernandes et al., 2022), incorpo-
rating scores such as COMET-QE, COMET,
and cosine similarity by LaBSE. We explored
three different reranking strategies to handle
two types of candidates from sentence- and
paragraph-level translation and employed a fu-
sion method that integrates all three.

1 Introduction

This paper provides a system description of the
NTTSU team’s submissions to WMT 2024. We
took part in the General Translation Task (Kocmi
et al., 2024a) for English-to-Japanese (En-Ja) and
Japanese-to-Chinese (Ja-Zh). This task has three
tracks with different constraints on the use of train-
ing data and pre-trained models. For En-Ja, we par-
ticipated in the constrained track, which provides
sets specifically allow training data and pre-trained
models for use in traning the translation models.
Additionally, for Ja-Zh, we participated in the open
track, which allows the use of software and data
under any open-source license.

Our team’s submission leveraged several large
language models developed through a training pro-
cedure (Guo et al., 2024; Kondo et al., 2024) that
includes continual pre-training and supervised fine-
tuning. For paragraph-level translation, we gen-
erated synthetic paragraph-aligned data and used
these data for training.

In the task of translating Japanese to Chinese, we
focused on speech domain translation. Specifically,
we built Whisper models (Radford et al., 2022)
for Japanese automatic speech recognition (ASR).
We used the YODAS dataset (Li et al., 2024) for
Whisper training. Since these data contained many
noisy data pairs, we combined the Whisper outputs
using ROVER (Fiscus, 1997) to refine the transcrip-
tions. Furthermore, to enhance the robustness of
the translation model against errors in the transcrip-
tions, we performed data augmentation by forward
translation from audio, using both ASR and base
translation models.

To select the best translation from multiple hy-
potheses of the models, we applied Minimum
Bayes Risk decoding after quality estimation (Fer-
nandes et al., 2022), incorporating scores such
as COMET-QE, COMET, and cosine similarity
by LaBSE. We explored three different reranking
strategies to handle two types of candidates from
sentence- and paragraph-level translation and em-
ployed a fusion method that integrates all three.

2 System Overview

Our system had three main components: automatic
speech recognition (ASR) models, translation mod-
els, and a reranking.

This year, speech domain translation was newly
incorporated in the above task, and audio data,
along with the organizer’s transcription, were pro-
vided as input data. We were interested in the
feasibility of speech translation from Japanese, so
we created an ASR model for the Ja-Zh and used
its transcription as the additional source text. More-
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over, we used ROVER to refine the transcriptions.
For the translation model’s architecture, we em-

ployed and trained the Transformer model and
LLMs. To train the LLms, we carried out monolin-
gual/parallel continual pre-training and supervised
fine-tuning. The evaluation for this year was con-
ducted at the paragraph level. To address this, we
created sentence- and paragraph-level parallel data
and utilized these data to build translation models
for each level.

During the inference step, we used the transla-
tion models to independently translate at the sen-
tence and the paragraph level, generating multiple
candidates. We then selected the best translation
candidate using a reranking that combines sentence-
and paragraph-level reranking with MBR decoding
after quality estimation.

3 Automatic Speech Recognition

For Ja-Zh speech translation, we fine-tuned various
Whisper-based ASR models for the Japanese ASR
task. We used the Japanese subset (ja100) of the
YODAS dataset, which consists of approximately
3,000 hours of speech and transcriptions.

3.1 Dataset
During the dataset review, we found that the YO-
DAS dataset contained many incorrect transcrip-
tions (e.g., music and non-Japanese speech sam-
ples). To mitigate the negative impact of these
incorrect samples, we refined the YODAS dataset.
We integrated transcriptions of multiple hypotheses
transcription generated from multiple ASR models
to create a tuning dataset. Specifically, the follow-
ing procedure was used to generate tuning data.

1. Generation We performed beam search de-
coding with multiple ASR models to gener-
ate multiple ASR hypotheses for each speech
sample in ja100. This process yielded a set
of hypotheses equal to the number of ASR
models multiplied by the beam size. We set a
beam size of 4.

2. Language-based Filtering We applied multi-
step filtering for the YODAS dataset. First, we
used Whisper to transcribe the speech; then,
we applied the Compact Language Detector
v3 (CLD3) 1 to filter non-Japanese language.
Next, we excluded the transcriptions that did
not contain Japanese-specific characters (i.e.,

1https://github.com/google/cld3

hiragana or katakana). After language-based
filtering, we filterd out uncertain transcription
that contained repetition. Specifically, texts
with bi-grams appearing more than six times
were excluded.

3. Combination After filtering, we combined
multiple ASR hypotheses using the Rec-
ognizer Output Voting Error Reduction
(ROVER) (Fiscus, 1997).

4. CER-based Filtering To filter uncertain sam-
ples of ROVER results, we applied accuracy-
based filtering. We measured the character
error rate (CER) between the ROVER results
and the original subtitles in YODAS. A high
CER indicates that either one or both may be
significantly inaccurate. For the ASR train-
ing, we constructed a development set of 2k
samples of CER ≤ 0.3 data. No CER filtering
was applied to the training set because no pos-
itive effect was observed in preliminary exper-
iments. Finally, all ROVER results except the
development set (1,614,110 segments) were
treated as the training set. For the training of
MT using the ASR data (described in §4.3),
samples with CER ≤ 0.3 (693,304 segments)
were used.

To compare the quality of the original subtitles
and the ROVER results, we subjectively evaluated
the two corresponding transcriptions of 100 ran-
domly selected samples. As a result, we determined
that the ROVER results were of higher quality.

3.2 Model

To create the tuning data, we used two pre-trained
ASR models: Whisper large-v32 and kotoba-
whisper-v1.13, a Japanese-specific ASR model.

3.3 Training

Using the tuning data created through the above
procedure with the two ASR models, we separately
fine-tuned each of these models. The training of the
model was conducted using the AdamW optimizer,
with parameters set as β1 = 0.9, β2 = 0.999, ϵ =
1e− 8. We employed a linear decay learning rate
scheduler and set the warmup steps to 500. The
model’s parameters were saved every 4000 steps.

2https://huggingface.co/openai/
whisper-large-v3

3https://huggingface.co/kotoba-tech/
kotoba-whisper-v1.1
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The training was carried out with a batch size of 32
samples over a single epoch. We selected the best
model based on the loss in the dev set.

3.4 Inference

During inference, we performed a beam search
with a beam size of 4 and combined these four hy-
potheses using ROVER. For the post-processing
of the ASR stage, we integrated punctuation and
sentence segmentation into the transcription. We
used the fine-tuned version of xlm-roberta4 and
Bunkai (Hayashibe and Mitsuzawa, 2020)5 for
punctuation insertion and sentence segmentation,
respectively. Finally, the two types of hypotheses
from the two ASR models were passed to MT.

In the data generation process for MT training
(§4.3), ROVER was not performed and the top-1
hypothesis of the beam search was used.

4 Primary Translation Model

4.1 Dataset

We used two types of text corpora: monolingual
and parallel data. Monolingual data are used for
monolingual continual pre-training, while parallel
data are used for parallel continual pre-training,
sentence-level supervised fine-tuning (SFT), and
paragraph-level SFT.

En-Ja We used the following monolingual cor-
pora: Common Crawl (Kocmi et al., 2022), Leipzig
Corpora (Goldhahn et al., 2012), News Crawl,
and News Commentary (Kocmi et al., 2023). We
also used JParaCrawl v3.0 (Morishita et al., 2022),
News Commentary (Kocmi et al., 2023), the Ky-
oto Free Translation Task Corpus (KFTT) (Neu-
big, 2011), TED Talks (Barrault et al., 2020), and
past WMT test data as the parallel data. Since
JParaCrawl v3.0 is automatically created and con-
tains a certain amount of noisy data, we filtered
the corpus based on sentence embeddings. We em-
ployed LaBSE (Feng et al., 2022) to embed the
source and target sentences and then filtered out
the sentence pairs in which the similarities are not
between 0.4 and 0.9.

Ja-Zh We used the following monolingual cor-
pora: Leipzig Corpora (Goldhahn et al., 2012),
News Crawl, and News Commentary (Kocmi et al.,

4https://huggingface.co/1-800-BAD-CODE/
xlm-roberta_punctuation_fullstop_truecase

5https://github.com/megagonlabs/bunkai

2023). In order to obtain parallel data for con-
tinual pre-training, we used JParaCrawl Chinese
v2.0 (Nagata et al., 2024). Since this corpus also
contains noisy data, we filtered them using the
same method as in the En-Ja task. For sentence-
level SFT, we used ASPEC-JC (Nakazawa et al.,
2016) and Flores-200 (NLLB Team et al., 2022)
as training and development sets. In addition to
the data for sentence-level SFT, we used News
Commentary, WIT3 (Cettolo et al., 2012), Global
Voice, and Neulab TedTalks (Tiedemann, 2012)
as parallel corpora with context information for
paragraph-level SFT.

4.2 Model Selection

For the En-Ja task, we used the largest available
LLM in the constrained track, Llama-2-13b6 (Tou-
vron et al., 2023). For the Ja-Zh task, we used
TowerBase-13B-v0.1 7 (Alves et al., 2024), a
model based on Llama-2-13b that has been con-
tinually pre-trained with monolingual and parallel
data.

Additionally, we developed and deployed a
Transformer (Vaswani et al., 2017) model trained
from scratch. As training data, we used JParaCrawl
v3.0 for the En-Ja task and JParaCrawl Chinese
v2.0 for the Ja-Zh task. The model configuration
and hyperparameters are detailed in Table 1.

4.3 LLM Training Procedure

We conducted a three-stage training process based
on research conducted on translation models using
LLMs (Guo et al., 2024; Kondo et al., 2024). In
the first stage, we performed continual pre-training
with monolingual data. In the second stage, we
conducted continual pre-training with parallel data.
Finally, in the third stage, we carried out supervised
fine-tuning. The detailed model configuration and
hyperparameters are given in Table 1.

Monolingual Continual Pre-Training It has
been reported that LLMs primarily pre-trained in
English, such as Llama-2, have lower translation ac-
curacy for languages other than English (Xu et al.,
2024). Therefore, we performed continual pre-
training using monolingual data to enhance the

6https://huggingface.co/meta-llama/
Llama-2-13b-hf

7https://huggingface.co/Unbabel/
TowerBase-13B-v0.1

8https://github.com/facebookresearch/fairseq
9https://github.com/huggingface/transformers
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Transformer Enc-Dec model

Subword Size 32,000
Architecture Transformer (big)
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1e− 8)
LR Scheduler Inverse Square root decay
Warmup Steps 4,000
Max Learning Rate 1e-3
Dropout 0.3
Gradient Clipping 1.0
Label Smoothing 0.1
Batch Size 512,000 tokens
Number of Updates 50,000 steps
Implementation fairseq8 (Ott et al., 2019)

Common Settings for All LLMs Training Phases

Warmup Ratio 1%
Gradient Clipping 1.0
Weight Decay 1.0
Implementation transformers9 (Wolf

et al., 2020)

Continual Pre-Training Settings

Optimizer AdamW (β1 = 0.9, β2 =
0.95, ϵ = 1e− 5)

LR Scheduler Cosine
Max Learning Rate (full
/ LoRA)

1.5e-4 / 2.0e-4

Batch Size 1,024 samples
Epoch 1
Context Length 2,048

Supervised Fine-tuning Settings

Optimizer AdamW (β1 = 0.9, β2 =
0.999, ϵ = 1e− 8)

LR Scheduler Inverse Square root decay
Max Learning Rate 2.0e-4
Batch Size 1,024 samples
Epoch 3

LoRA Settings

Rank / Alpha 16 / 32
Dropout 0.05
Target Modules QKVO, FFN

Table 1: Model configuration and hyperparameters.

generation capabilities in languages other than En-
glish.

We used randomly sampled data from the mono-
lingual corpora described in §4.1. For the En-Ja
task, we created two models, ver1 and ver2, and
trained them using randomly sampled data of 1B
and 4B tokens, respectively. In contrast, for the
Ja-Zh task, we trained only a single model with
randomly sampled data of 1B tokens due to the
lack of time and GPU resources.

Parallel Continual Pre-Training After complet-
ing monolingual continual pre-training, we per-
formed continual pre-training using parallel data.
Based on the findings of (Kondo et al., 2024), we

used data where the source text is followed by its
translation.

For the En-Ja task, the ver1 model was trained
using LoRA (Hu et al., 2022), while the ver2 model
was trained with full weights. Additionally, ver1
was trained using only the sentence-level parallel
data from JParaCrawl v3.0, whereas ver2 utilized
JParaCrawl v3.0 along with TED and News Com-
mentary as pseudo-paragraph data.

Supervised Fine-Tuning After completing con-
tinual pre-training in monolingual and parallel data,
we performed supervised fine-tuning using LoRA.
The prompts applied to the training data were the
same as those used in ALMA (Xu et al., 2024), and
the same prompts were used during inference. Note
that loss in the prompt outputs was excluded during
training (Xu et al., 2024; Kondo et al., 2024).

Additionally, for domain adaptation, we per-
formed SFT using data from each specific domain.
For the En-Ja task, the ver1 model was fine-tuned
using TED Talks, KFTT, and past WMT test data.
In contrast, the ver2 model was fine-tuned with the
same three datasets as ver1, plus two additional set-
tings: using only the news domain data and using
only the social domain data each from past WMT
test data. Note that the past WMT test data used
for SFT training consisted of the WMT20 devel-
opment and test data, with the other test data from
WMT21 to WMT23. For WMT21, both En-Ja and
Ja-En directions were included, while WMT22 and
WMT23 were composed only of the Ja-En direc-
tion. Additionally, the development data for all
SFT were the WMT22 En-Ja data. As a result,
we obtained a total of eight fine-tuned models for
En-Ja. For Ja-Zh, we also performed SFT with
synthetic data to enhance robustness against errors
in the transcription for the speech domain. These
data were constructed by forward translation from
audio data using ASR and Transformer models.

5 Reranking

To enhance translation quality, we applied rerank-
ing to the candidate sentences. We conducted a
comparative analysis of various methods and strate-
gies, as described in §5.1 and §5.3, on the candidate
generated by the methods described in §5.2.

5.1 Methods
The reranking approach is used to obtain the fi-
nal output ŷ from the set of candidate sentences C
generated by the methods described in §5.2.
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Quality Estimation (QE) This approach in-
volves evaluating the candidates using reference-
free quality estimation techniques, such as
COMET-QE (Rei et al., 2021, 2022, 2023) and
sentence embedding-based similarity, and subse-
quently selecting the candidate with the highest
score, as follows:

ŷ = argmax
c∈C

m∑

i=1

λiQEi(x, c), (1)

where QEi(·, ·) is a reference-free quality estima-
tion function and λi represents its weight, subject
to

∑m
i=1 λi = 1.

Minimum Bayes Risk (MBR) decoding MBR
decoding (Fernandes et al., 2022) employs
reference-based metrics to rank translation candi-
dates. It aims to identify the translation that maxi-
mizes expected utility while equivalently minimiz-
ing the risk (Meister et al., 2020; Eikema and Aziz,
2020) as follows:

ŷi = argmax
ci∈C

1

|C|

|C|∑

j=1

RefMetric(ci, cj), (2)

where RefMetric(·, ·) is a reference-based metric.
Note that MBR decoding scores the candidate using
reference-based metrics by treating all candidates
as reference texts without using an actual reference
text.

MBR after QE (QE→MBR) This approach in-
tegrates QE with MBR decoding (Fernandes et al.,
2022). The scores produced by the quality esti-
mation procedure determined the top-n sample set
from candidate set C as Ctop-n. Subsequently, MBR
is applied to Ctop-n.

5.2 Candidate Generation
We generated five candidates for each model by
varying the sampling methods during generation.
For the speech domain in Ja-Zh, we had two extra
transcriptions from our ASR models in addition
to the official one. As a result, we generated five
candidates for these two transcriptions and LLM
models in the same manner. For models based on
Llama-2-13b and TowerBase-13B-v0.1, the five
methods were as follows: 1. greedy decoding (no
sampling), 2. beam search with a beam size of 4,
3. temperature of 0.9, 4. temperature of 0.5, and
5. temperature of 0.3. For methods 3, 4, and 5,
parameters other than temperature were set with

top_p at 0.6 and top_k at 50. We also used the top-
5 candidates from beam search for the Transformer
with a beam size of 6. As a result, a total of 45
candidate sentences were generated for the En-Ja
task using the eight SFT models described in §4.3,
along with the Transformer model, making a total
of nine models.

Furthermore, for each SFT model, we employed
two approaches to generate candidates.

Sentence-Level Generation First, we used
pySBD10 (Sadvilkar and Neumann, 2020) to split
the original paragraph-level test data into sentences,
and then we performed sentence-level inference to
generate sentence candidates Csent.
Paragraph-Level Generation We used the para-
graph data directly as model input for generating
paragraph candidates Cpara.

5.3 Reranking System
For the two types of candidates mentioned in §5.2,
we used three reranking strategies and one fusion
method that integrates all three.

Synthesized Paragraph Reranking In each
sentence-level inference result, we concatenated
the sentences that originally belonged to the same
paragraph in order and then performed reranking
on the synthesized paragraph.

Individual Sentence Reranking We performed
sentence-level reranking on the sentence candidates
Csent and then reconstructed the paragraphs from
the final reranked results.

Full Paragraph Reranking The paragraph can-
didates Cpara were used as the objects of reranking,
directly generating paragraph-level results.

Multi-Attribute Candidate Reranking We es-
tablished a larger set of multi-attribute candidates
Cmac according to the three reranking strategies
mentioned above:

• Synthesized paragraph candidates by concate-
nating the sentences in order from sentence
candidates Csent.

• Paragraph data reconstructed on the results
obtained by different reranking methods from
Individual Sentence Reranking.

• Paragraph candidates Cpara generated by
Paragraph-Level Generation.

10https://github.com/nipunsadvilkar/pySBD
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CER COMET
(YODAS) (WMT test)

Whiper large-v3 7.7 0.4598
+ FT 4.8 0.4601

kotoba-whisper-v1.1 12.6 0.4407
+ FT 5.0 0.4518

Official transcription - 0.7278

Table 2: ASR performances and their translation accu-
racies. Second column is CER results on the evaluation
data of the YODAS dataset. Third column is COMET
results on the speech domain of this year’s WMT test
set.

Then, Cmac was used for paragraph-level reranking.

6 Experiment and Analysis

6.1 Results of ASR

The second column of Table 2 shows the ASR re-
sults (with and without fine-tuning on the YODAS
dataset) for the Ja-Zh speech translation. Note
that this evaluation was not done in combination
with the ROVER system. We confirmed that fine-
tuning improved the recognition performance on
the YODAS dataset. The third column of Table 2
shows the translation results11 for the WMT test
set. Fine-tuning resulted in a relative improvement
of 2.5% for kotoba-whisper-v1.1, but no signifi-
cant improvement was observed for Whisper-large-
v3, even through it demonstrated high ASR perfor-
mance before fine-tuning. Moreover, our models
performed worse than the official transcriptions.
We trained the ASR models using relatively short
audio samples, whereas the audio samples in the
test set were longer than 30 seconds. This gap
between the training and test conditions likely con-
tributed to the degradation in speech recognition
accuracy. In addition, we prepared ASR models for
a wide range of topics, domains, and noise levels
for open-domain speech input. For this purpose, we
used the YODAS dataset instead of datasets such as
TED, CSJ, and Libri, which contain clean speech
with human transcriptions. However, this strategy
did not turn out to be suitable for the WMT test set.
In fact, when we listened to the speech from the
test set, the SNR was high and clean. This gap may
have also contributed to the degradation. These
findings will be leveraged for future improvements.

11We used wmt22-comet-da. During this evaluation, we
used the official transcription as the source text for all hypothe-
ses because it would be the most accurate transcription. https:
//huggingface.co/Unbabel/wmt22-comet-da

Model Input COMET22

Ver1
Sentence 0.8218
Paragraph 0.7666

Ver2
Sentence 0.8352
Paragraph 0.8349

Table 3: COMET Scores of Sentence-Level and
Paragraph-Level SFT on WMT23 En-Ja test data

Scoring Function COMET22

LaBSE-cos 0.8364
Comet-QE20 0.8797
Comet-QE21 0.8837
CometKiwi22 0.8821
CometKiwi23-xl 0.8819
0.5×Comet-QE20 + 0.5×LaBSE-cos 0.8835
0.8×Comet-QE21 + 0.2×LaBSE-cos 0.8856
0.9×CometKiwi22 + 0.1×LaBSE-cos 0.8824
0.9×CometKiwi23-xl + 0.1×LaBSE-cos 0.8830

MBR ratio COMET22

QE (Top 10%) 0.8911
QE (Top 20%) 0.8940
QE (Top 30%) 0.8949
QE (Top 40%) 0.8950
QE (Top 50%) 0.8955
QE (Top 60%) 0.8955
QE (Top 70%) 0.8954
QE (Top 80%) 0.8953
QE (Top 90%) 0.8953
100% 0.8953

Table 4: COMET Scores of QE and MBR decoding
on WMT23 En-Ja test data. The 45 candidates used
were generated by the methods in §5.2. MBR decoding
was performed after QE with the best scoring function,
0.8×Comet-QE21 + 0.2×LaBSE-cos.

6.2 Sentence-Level versus Paragraph-Level in
SFT

In the SFT experiments using past WMT test data,
we evaluated whether sentence-level or paragraph-
level source texts achieved better accuracy by as-
sessing them with COMET (wmt22-comet-da) on
the WMT23 En-Ja test data. For paragraph-level
training, the data were reconstructed from sentence-
level to paragraph-level based on the .xml files pro-
vided by WMT. Table 3 shows the results, indicat-
ing that sentence-level inputs achieved higher ac-
curacy than those of paragraph-level inputs. There-
fore, for subsequent SFT, we used only sentence-
level inputs.

6.3 Results of Quality Estimation
To identify the scoring function in Eq.(1) that yields
the highest translation accuracy, we compared ten
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ID System MetricX ↓ CometKiwi ↑
(a) Synthesized Para 2.8830 0.7260
(b) Individual Sent 2.8100 0.7273
(c) Full Para 2.7263 0.7260
(d) Multi-Attribute 2.6321 0.7310

Table 5: Results of Reranking Systems on WMT24
En-Ja test data. Systems (a)~(c) used 45 candidates,
while System (d) used 100 candidates, consisting of 45
from Csent, 45 from Cpara, and 10 results obtained by
Individual Sentence Reranking using the 10 methods
listed in Table 4. All of the system results are based on
Top 50% MBR decoding after QE with the best scoring
function, 0.8×Comet-QE21 + 0.2×LaBSE-cos.

different scoring functions based on the findings
in the paper. We used COMET-QE and LaBSE co-
sine similarity for scoring functions and evaluated
them with COMET on the WMT23 En-Ja test data.
Since the WMT23 test data are sentence-level, we
used the 45 candidate sentences generated through
paragraph-level generation, where each sentence
was directly input, as described in §5.2. Addition-
ally, the reranking system utilized Full Paragraph
Reranking, as described in §5.3. Table 4 shows
the results, indicating that 0.8×wmt21-comet-qe
+ 0.2×LaBSE-cos achieved the highest accuracy.
Therefore, this scoring function was adopted for
subsequent experiments and finally the submitted
system.

6.4 Resluts of MBR after QE
We investigated the proportion of MBR that
achieved the highest accuracy under the same con-
ditions as in §6.3. Table 4 shows the results, indi-
cating that accuracy was maximized at 50%. There-
fore, in subsequent experiments and the submitted
system, the proportion of MBR was set to 50%.

6.5 Results of Reranking Systems
Table 5 shows the results of the reranking system on
WMT24 En-Ja. We used MetricX-23-XL (Juraska
et al., 2023) and CometKiwi-DA-XL (Rei et al.,
2023) as evaluation metrics, consistent with the
WMT24 preliminary report (Kocmi et al., 2024b).
From these results, it was found that the Multi-
Attribute Candidate Reranking achieved the highest
accuracy. Therefore, we adopted Multi-Attribute
Candidate Reranking for the submitted system.

7 Conclusion

In this paper, we described our system for the
WMT’24 General Translation Task. We developed

ASR models for the speech domain in Ja-Zh and
used Transformer and LLMs for the translation
models. We trained LLMs using a three-stage train-
ing process: Monolingual Continual Pre-training,
Parallel Continual Pre-Training, and Supervised
Fine-Tuning. Finally, we applied reranking method
and strategies to the translation candidates gener-
ated by the translation models. Our analyses con-
firmed the effectiveness of our reranking method
and strategies for paragraph-level translation.
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