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Abstract

This paper describes the development process
of NMT systems that were submitted to the
WMT 2024 General Translation and Biomed-
ical shared tasks by the team of AIST AIRC.
At WMT 2024 AIST AIRC participated in the
General Machine Translation shared task and
the Biomedical Translation task. We trained
constrained track models for translation be-
tween English, German, and Japanese. Before
training our models, we first filtered the parallel
data, then performed iterative back-translation
and additional filtering. We experimented with
training baseline Transformer models, Mega
models, and fine-tuning open-source T5 and
Gemma model checkpoints using the filtered
parallel data. Our primary submissions con-
tain translations from ensembles of two Mega
model checkpoints and our contrastive submis-
sions are generated by our fine-tuned T5 model
checkpoints.

1 Introduction

We describe the machine translation (MT) systems
submitted to the WMT 2024 General Translation
and Biomedical Translation tasks developed by
the team of AIST AIRC. We experimented with
data quality control by filtering out noisy exam-
ples from parallel and monolingual data sets before
training, and corpora selection. We also compared
several modeling approaches by contrasting our
previous year’s best constrained submission (Rik-
ters and Miwa, 2023) – the Mega model (Ma et al.,
2023) to open track approaches of fine-tuning T5
(Raffel et al., 2020) and Gemma (Mesnard et al.,
2024) model open-source checkpoints. When fine-
tuning T5 and Gemma models, we experimented
with adding named entity (NE) annotations (Rik-
ters and Miwa, 2024) to improve rare word trans-
lation, since struggling to correctly translate less
common NEs was one of the most common errors
identified in human evaluations of our WMT 2023
submissions.

2 Data

In the General Translation task we only partici-
pated in the constrained track, so our data selection
was limited to only the parallel corpora provided
by the shared task organizers, which for German
and Japanese was unchanged from the previous
year. For the Biomedical Translation task we used
a combination of General Translation task data and
Biomedical Translation task data.

All parallel training data and monolingual data
for back-translation were filtered before starting
any training, which has been proven very effective
in previous WMT shared tasks (Pinnis et al., 2018).
The filtering process we used is detailed by Rik-
ters (2018). We did not perform any parallel data
distillation for our submissions this year.

For the system development process in the Gen-
eral Translation task, we selected News Test sets
from the WMT 2022 shared task as development
data and test sets from WMT 2023 as evaluation
data. Statistics of the data we used are shown in
Table 1. For the Biomedical Translation task we
used the same combination of 2022 and 2023 de-
velopment / evaluation data sets.

2.1 Data Selection

To not overwhelm the full combined training data
set with lower-quality web-crawled data, we 1) lim-
ited the English-German Paracrawl to 50 million
parallel sentences; and 2) up-scaled all data from
other sources to match the amount of the Paracrawl
data after filtering by doubling for English-German
and tripling for English-Japanese.

2.2 Filtering

Even though all training data need not always be
perfect and methods like back-translation intention-
ally generate somewhat noisy additional training
data, some types of noise are more harmful than
others. Since most training corpora are produced
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Corpus / Filtering EN-DE EN-JA

All other
Before 16,752,302 8,076,155

After 13,737,028 7,076,869

Paracrawl
Before 50,000,000 21,891,738

After 44,533,635 21,088,689
Combined 72,007,691 42,319,296

Medline 45,796 -
UFAL Medical 3,036,581 -

Monolingual
Corpus / Filtering Before After

DE 43,613,631 37,110,981
JA 22,193,545 21,558,123

EN 47,333,840 36,756,542

Table 1: Training data statistics for all other parallel
data without Paracrawl, a subset of Paracrawl, combined
development and evaluation data from the past WMT
shared tasks, and monolingual data. Sentence counts
are listed before and after filtering.

partially or fully automatically, errors such as mis-
alignments between source and target sentences
or direct copies of source to target can occur, as
well as some amounts of third language data in
seemingly bilingual data sets.

To avoid such problems, we used data cleaning
and pre-processing methods described by Rikters
(2018). The filtering part includes the following
filters: 1) unique parallel sentence filter; 2) equal
source-target filter; 3) multiple sources - one tar-
get and multiple targets - one source filters; 4)
non-alphabetical filters; 5) repeating token filter;
and 6) correct language filter. We also perform
pre-processing consisting of the standard Moses
(Koehn et al., 2007) scripts for punctuation nor-
malization, cleaning, and Sentencepiece (Kudo and
Richardson, 2018) for splitting into subword units
for training MEGA models, and the default tokeniz-
ers for T5 and Gemma. The filters were applied
to the given parallel sentences, monolingual news
sentences before performing back-translation, and
both sets of synthetic parallel sentences resulted
from back-translating the monolingual news.

2.3 Back-translation

Increasing the amount of in-domain training data
with synthetic back-translated corpora (Sennrich
et al., 2016) is a common practice in cases with
considerable amounts of in-domain monolingual
data. However, since the task recently shifted from

‘news’ to ‘general’ text translation, the definition
of what would be considered in-domain data be-
came less clear. Furthermore, for the constrained
track the selection of provided monolingual data
from the organizers is still limited to news and
web-crawled data. No other monolingual data that
would be considered more similar to what the ‘gen-
eral’ test sets may include, such as user generated
(social media), conversational, and e-commerce
data are provided in the task. For our experiments
we continued to assume that a significant portion of
the test data would still be from the news domain.
Therefore, we chose to only use the provided mono-
lingual News crawl, News discussions, and News
Commentary corpora for back-translation.

2.4 Post-processing

In post-processing of the model output we aimed
to mitigate some of the most commonly notice-
able mistakes that the models were generating. We
mainly noticed two often occurring problems in
output from all models: 1) difficulties in translat-
ing emoji symbols; and 2) occasional repetitions of
words or phrases.

While all English and German alphabet letters
and even Japanese characters are covered in the
large training data corpora, the Unicode emoji
were mostly formed and clearly defined only in
the past decade, and new emoji are still added ev-
ery year or two with the next release planned for
late 20241. Emoji are also not often present in
MT training data, therefore full emoji coverage is
absent from model vocabularies, which leads to oc-
casional <unk> tokens being generated as output
if emoji were present in the input. In order to keep
using the models without re-training, we replaced
any <unk> tokens in the output using a dictionary
of any emojis appearing in the input.

Furthermore, the occasional hiccuping or halluci-
nating of models on less common input sequences
seems to still be present, sometimes generating rep-
etitions of tokens or phrases. We replaced any con-
secutive repeating n-grams with a single n-gram.
The same was applied to repeating n-grams that
have a preposition between them, i.e., the victim of
the victim.

Both post-processing approaches gave BLEU
score improvements of around 0.1 - 0.2.

1https://emojipedia.org/unicode-16.0
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3 Model Configurations

While preparing our submissions we experimented
with three main model types between the con-
strained and open system tracks. For our primary
submission we chose the constrained Mega models
similar to our last year’s primary submission (Rik-
ters and Miwa, 2023), and for contrastive submis-
sions we used T5 models (Raffel et al., 2020) fine-
tuned on NE-annotated General Translation task
data, and Gemma models (Mesnard et al., 2024)
tuned on General Translation task data.

3.1 Mega
Ma et al. (2023) proposed a moving average
equipped gated attention mechanism (MEGA) - a
single-head gated attention mechanism equipped
with exponential moving average to incorporate
inductive bias of position-aware local dependen-
cies into the position-agnostic attention mechanism.
Compared to the Transformer model, MEGA has a
single-head gated attention mechanism instead of
multi-head attention, which enables gains in effi-
ciency while not sacrificing on performance.

For training our Mega models we used the im-
plementation2 provided by the authors, which is
based on FairSeq (Ott et al., 2019).

3.2 T5
We experiment with multi-task training and fine-
tuning the T5 model (Raffel et al., 2020) for trans-
lation between English → German, as well as its
multilingual counterpart mT5 (Xue et al., 2021) for
English → Japanese translation. We compare the
results with non-modified versions of T5, Flan-T5,
and the multilingual mT5.

We combine and shuffle all training data for the
tasks, and experiment fine-tuning the large versions
( 1B parameters) of the T5 models using a random
subset of 10M parallel sentences. We base this
choice on observations from preliminary experi-
ments where the small versions of T5 models often
converged before reaching 1M examples and base
models converged before seeing 10M, since the
pre-trained checkpoints are already quite capable
as is.

We used the Adafactor optimizer (Shazeer and
Stern, 2018) with FP16 training, effective batch
sizes of 256 or 512 depending on the model size,
evaluation every 1000 steps, and early stopping set
to 10 checkpoints of evaluation loss not improving.

2https://github.com/facebookresearch/mega

We set learning rate to 0.0001, weight decay to
0.01, and train each model on a single machine
with eight NVIDIA A100 GPUs.

3.3 Gemma

We experimented with adapting 7B and 9B param-
eter sizes of the 1.1 and 2 version Gemma models
(Mesnard et al., 2024) using the in-domain data
provided for the General Translation shared task.
We used the same random subset of 10M training
examples as we did for training T5 models.

4 Results

4.1 General Translation Task

We include the official preliminary automatic rank-
ing results provided by the organizers in Tables 2
and 3. Our primary submissions rank 2nd and 4th
among the constrained track (with a white back-
ground) for EN-DE and EN-JA respectively. Sadly,
they were both not selected for human evaluation
by the task organizers due to a large number of
submissions and budget constraints this year. Ref-
erences had also not been released as of writing the
final submission, therefore, additional metrics or
manual assessment of the translations could not be
performed.

4.2 Biomedical Translation Task

For the Biomedical Translation task we compared
our best models trained for the General Translation
task with ones fine-tuned on the biomedical train-
ing data, as well as dedicated models trained on the
biomedical data from the start. Table 4 shows our
preliminary results from developing Mega models
for the English↔German tracks of the Biomedical
Translation task. We only used different configu-
rations of the MEGA models and compared them
with the baseline model submitted to the general
translation task. Our best configuration was an en-
semble of three separate model checkpoints trained
on a mixture of biomedical training data and gen-
eral data, and fine-tuned on biomedical data.

Table 5 lists the preliminary official results of the
Biomedical Translation task provided by the task
organizers. According to the BLEU scores, our
models seem to be ranked 2nd in both translation
directions, overtaken only by the submissions from
Unbabel, which are 70B parameter large language
models. Similarly to the General Translation task,
references for these had also not been released as of
writing the final submission, therefore, additional
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System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation

IOL-Research 2.3 1.6 0.692 ✓

Llama3-70B § 2.5 1.7 0.686 ✓

Aya23 2.7 1.8 0.680 ✓

IKUN 3.0 1.8 0.668 ✓

IKUN-C 3.8 2.0 0.641 ✓

CUNI-NL 4.2 2.1 0.624

AIST-AIRC 7.2 3.3 0.551
Occiglot 8.2 3.8 0.539
MSLC 11.9 4.4 0.390
TSU-HITs 13.3 5.6 0.395
CycleL2 27.0 11.5 0.091
CycleL 27.0 11.5 0.091

Table 2: Preliminary WMT24 General MT automatic ranking for English→German (excluding closed systems).

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation

Team-J 1.9 2.9 0.740 ✓

NTTSU 1.9 2.6 0.731 ✓

IOL-Research 2.3 3.1 0.724 ✓

Aya23 2.3 3.1 0.719 ✓

Llama3-70B § 2.6 3.5 0.714 ✓

IKUN 3.1 3.7 0.696
IKUN-C 3.9 4.3 0.669 ✓

AIST-AIRC 6.6 6.5 0.583
CycleL 24.0 22.4 0.101

Table 3: Preliminary WMT24 General MT automatic ranking for English→Japanese (excluding closed systems).

metrics or manual assessment of the translations
could not be performed.

5 Conclusion

In this paper we described the development pro-
cess of the AIST AIRC’s NMT systems that were
submitted for the WMT 2024 shared tasks on gen-
eral domain text translation and biomedical trans-
lation. We compared training MEGA models to
fine-tuning T5 and Gemma model architectures
in search of the best decoding approach for im-
proving upon output quality. Our results showed
that the MEGA model architecture remains highly
competitive even in the modern world of large
language models, and fine-tuning LLMs with NE-
annotated data does not necessarily lead to higher
automatic evaluation scores. Especially in the
Biomedical Translation task our 100M parame-
ter models demonstrated high competitiveness with
the leading 70B parameter models, falling only

0.42 BLEU points behind for EN→DE.
In total, output from four primary systems was

submitted to the two shared tasks by AIST AIRC
for the English↔German and English→Japanese
translation directions.

In future work, we plan to experiment with in-
corporating document-level training data and mod-
eling longer sequences with appropriate available
training data. In terms of data, we intend to in-
crease vocabulary coverage by adding all known
unicode emoji symbols to the vocabulary even if
they are not present in the training data, as well
as additionally sample Paracrawl data where emoji
are present.
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Configuration EN→DE DE→EN
Baseline General model 27.23 35.00
General BT model 26.47 33.90
Bio trained/adapted 31.33 40.21
Bio-Baseline ensemble 30.95 39.14
Bio-best-last 31.33 40.14
Bio-ens-15 31.23 40.12
Bio-ens-14 31.21 39.80
Bio-ens-14-15 31.44 40.17
Bio-ens-14-15-2 31.47 40.45

Table 4: Biomedical task development BLEU score
results evaluated on the 2023 Biomedical Translation
task test set. The top 3 rows are single model results
from the baseline model of the General Translation task,
the model after back-translation (BT), and the models
specifically trained and adapted on the biomedical (Bio)
task data. All remaining rows are combinations of en-
sembles consisting of best, last, and other checkpoints
from the baseline and biomedical specific models.

System Name EN→DE DE→EN
ADAPT 30.16 36.93
AIST-AIRC 33.80 45.92
DCUGenNLP 16.46 32.60
HW-TSC 28.77 45.79
Unbabel 34.22 49.05

Table 5: Preliminary WMT24 Biomedical Translation
Task BLEU score results.
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