@inproceedings{kuzhuget-etal-2024-enhancing,
title = "Enhancing Tuvan Language Resources through the {FLORES} Dataset",
author = "Kuzhuget, Ali and
Mongush, Airana and
Oorzhak, Nachyn-Enkhedorzhu",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Ninth Conference on Machine Translation",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wmt-1.46",
pages = "593--599",
abstract = "FLORES is a benchmark dataset designed for evaluating machine translation systems, partic- ularly for low-resource languages. This paper, conducted as a part of Open Language Data Ini- tiative (OLDI) shared task, presents our contri- bution to expanding the FLORES dataset with high-quality translations from Russian to Tu- van, an endangered Turkic language. Our ap- proach combined the linguistic expertise of na- tive speakers to ensure both accuracy and cul- tural relevance in the translations. This project represents a significant step forward in support- ing Tuvan as a low-resource language in the realm of natural language processing (NLP) and machine translation (MT).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kuzhuget-etal-2024-enhancing">
<titleInfo>
<title>Enhancing Tuvan Language Resources through the FLORES Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Kuzhuget</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Airana</namePart>
<namePart type="family">Mongush</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nachyn-Enkhedorzhu</namePart>
<namePart type="family">Oorzhak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>FLORES is a benchmark dataset designed for evaluating machine translation systems, partic- ularly for low-resource languages. This paper, conducted as a part of Open Language Data Ini- tiative (OLDI) shared task, presents our contri- bution to expanding the FLORES dataset with high-quality translations from Russian to Tu- van, an endangered Turkic language. Our ap- proach combined the linguistic expertise of na- tive speakers to ensure both accuracy and cul- tural relevance in the translations. This project represents a significant step forward in support- ing Tuvan as a low-resource language in the realm of natural language processing (NLP) and machine translation (MT).</abstract>
<identifier type="citekey">kuzhuget-etal-2024-enhancing</identifier>
<location>
<url>https://aclanthology.org/2024.wmt-1.46</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>593</start>
<end>599</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Tuvan Language Resources through the FLORES Dataset
%A Kuzhuget, Ali
%A Mongush, Airana
%A Oorzhak, Nachyn-Enkhedorzhu
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Ninth Conference on Machine Translation
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F kuzhuget-etal-2024-enhancing
%X FLORES is a benchmark dataset designed for evaluating machine translation systems, partic- ularly for low-resource languages. This paper, conducted as a part of Open Language Data Ini- tiative (OLDI) shared task, presents our contri- bution to expanding the FLORES dataset with high-quality translations from Russian to Tu- van, an endangered Turkic language. Our ap- proach combined the linguistic expertise of na- tive speakers to ensure both accuracy and cul- tural relevance in the translations. This project represents a significant step forward in support- ing Tuvan as a low-resource language in the realm of natural language processing (NLP) and machine translation (MT).
%U https://aclanthology.org/2024.wmt-1.46
%P 593-599
Markdown (Informal)
[Enhancing Tuvan Language Resources through the FLORES Dataset](https://aclanthology.org/2024.wmt-1.46) (Kuzhuget et al., WMT 2024)
ACL