@inproceedings{htun-poncelas-2024-rakutens,
title = "Rakuten{'}s Participation in {WMT} 2024 Patent Translation Task",
author = "Htun, Ohnmar and
Poncelas, Alberto",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Ninth Conference on Machine Translation",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wmt-1.52",
pages = "643--646",
abstract = "This paper introduces our machine transla- tion system (team sakura), developed for the 2024 WMT Patent Translation Task. Our sys- tem focuses on translations between Japanese- English, Japanese-Korean, and Japanese- Chinese. As large language models have shown good results for various natural language pro- cessing tasks, we have adopted the RakutenAI- 7B-chat model, which has demonstrated effec- tiveness in English and Japanese. We fine-tune this model with patent-domain parallel texts and translate using multiple prompts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="htun-poncelas-2024-rakutens">
<titleInfo>
<title>Rakuten’s Participation in WMT 2024 Patent Translation Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ohnmar</namePart>
<namePart type="family">Htun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Poncelas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces our machine transla- tion system (team sakura), developed for the 2024 WMT Patent Translation Task. Our sys- tem focuses on translations between Japanese- English, Japanese-Korean, and Japanese- Chinese. As large language models have shown good results for various natural language pro- cessing tasks, we have adopted the RakutenAI- 7B-chat model, which has demonstrated effec- tiveness in English and Japanese. We fine-tune this model with patent-domain parallel texts and translate using multiple prompts.</abstract>
<identifier type="citekey">htun-poncelas-2024-rakutens</identifier>
<location>
<url>https://aclanthology.org/2024.wmt-1.52</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>643</start>
<end>646</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Rakuten’s Participation in WMT 2024 Patent Translation Task
%A Htun, Ohnmar
%A Poncelas, Alberto
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Ninth Conference on Machine Translation
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F htun-poncelas-2024-rakutens
%X This paper introduces our machine transla- tion system (team sakura), developed for the 2024 WMT Patent Translation Task. Our sys- tem focuses on translations between Japanese- English, Japanese-Korean, and Japanese- Chinese. As large language models have shown good results for various natural language pro- cessing tasks, we have adopted the RakutenAI- 7B-chat model, which has demonstrated effec- tiveness in English and Japanese. We fine-tune this model with patent-domain parallel texts and translate using multiple prompts.
%U https://aclanthology.org/2024.wmt-1.52
%P 643-646
Markdown (Informal)
[Rakuten’s Participation in WMT 2024 Patent Translation Task](https://aclanthology.org/2024.wmt-1.52) (Htun & Poncelas, WMT 2024)
ACL