@inproceedings{dreano-etal-2024-exploration,
title = "Exploration of the {C}ycle{GN} Framework for Low-Resource Languages",
author = {Dreano, S{\"o}ren and
Molloy, Derek and
Murphy, Noel},
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Ninth Conference on Machine Translation",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wmt-1.66",
pages = "756--761",
abstract = "CycleGN is a Neural Machine Translation framework relying on the Transformer architecture. The foundational concept of our research posits that in an ideal scenario, retro-translations of generated translations should revert to the original source sentences. Consequently, a pair of models can be trained using a Cycle Consistency Loss only, with one model translating in one direction and the second model in the opposite direction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dreano-etal-2024-exploration">
<titleInfo>
<title>Exploration of the CycleGN Framework for Low-Resource Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sören</namePart>
<namePart type="family">Dreano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="family">Molloy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noel</namePart>
<namePart type="family">Murphy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>CycleGN is a Neural Machine Translation framework relying on the Transformer architecture. The foundational concept of our research posits that in an ideal scenario, retro-translations of generated translations should revert to the original source sentences. Consequently, a pair of models can be trained using a Cycle Consistency Loss only, with one model translating in one direction and the second model in the opposite direction.</abstract>
<identifier type="citekey">dreano-etal-2024-exploration</identifier>
<location>
<url>https://aclanthology.org/2024.wmt-1.66</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>756</start>
<end>761</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploration of the CycleGN Framework for Low-Resource Languages
%A Dreano, Sören
%A Molloy, Derek
%A Murphy, Noel
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Ninth Conference on Machine Translation
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F dreano-etal-2024-exploration
%X CycleGN is a Neural Machine Translation framework relying on the Transformer architecture. The foundational concept of our research posits that in an ideal scenario, retro-translations of generated translations should revert to the original source sentences. Consequently, a pair of models can be trained using a Cycle Consistency Loss only, with one model translating in one direction and the second model in the opposite direction.
%U https://aclanthology.org/2024.wmt-1.66
%P 756-761
Markdown (Informal)
[Exploration of the CycleGN Framework for Low-Resource Languages](https://aclanthology.org/2024.wmt-1.66) (Dreano et al., WMT 2024)
ACL