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Abstract

This paper details the submission of Sam-
sung R&D Institute Philippines (SRPH) Lan-
guage Intelligence Team (LIT) to the WMT
2024 Low-resource Languages of Spain shared
task. We trained translation models for Span-
ish to Aragonese, Spanish to Aranese/Occ-
itan, and Spanish to Asturian using a stan-
dard sequence-to-sequence Transformer archi-
tecture, augmenting it with a noisy-channel
reranking strategy to select better outputs dur-
ing decoding. For Spanish to Asturian trans-
lation, our method reaches comparable BLEU
scores to a strong commercial baseline transla-
tion system using only constrained data, back-
translations, noisy channel reranking, and a
shared vocabulary spanning all four languages.

1 Introduction

This paper details our constrained system
for translating from Spanish to Aragonese
(spa→arg), Aranese/Occitan (spa→arn), and As-
turian (spa→ast) for the WMT24 Shared Task:
Translation into Low-Resource Languages of Spain.
We trained standard sequence-to-sequence Trans-
former architecture (Vaswani et al., 2017) from
scratch combined with heavy data preprocessing
(Cruz, 2023), data augmentation via backtransla-
tion (Sennrich et al., 2016a), and noisy channel
reranking (Yee et al., 2019) to achieve performance
that is comparable to Apertium (Khanna et al.,
2021) v3.9.6 for spa→ast. We present ablation
results of the effect of data augmentation via back-
translation and noisy channel reranking with re-
spect to BLEU scores. Furthermore, we analyzed
the generated translations and we found that the
model learned to regurgitate, i.e. repeat with minor
modifications, the source Spanish sentences for the
spa→ast case. We also identify rarely occurring
characters that the model failed to learn. Lastly, we

bWork done while at Samsung R&D Institute Philippines

also investigated the effect of the length of back-
translated data on improving model performance.

2 Methodology

2.1 Environment
For preprocessing, training, and generation, we
used fairseq 0.12.2 and PyTorch 1.12.1. The train-
ing was done on either 2x NVIDIA Quadro GPUs
or 8x NVIDIA P100 GPUs. We used Apertium1

v3.9.6 for generating baseline results and generat-
ing backtranslated (BT) data whenever available
for the language pair.

2.2 Data Preprocessing
We trained on the OPUS dataset (Tiedemann,
2016) for all language pairs. The data prepro-
cessing pipeline utilizes the ratio-based filters and
embedding-based filters of Samsung R&D Insti-
tute Philippines’ WMT23 entry (Cruz, 2023). The
dataset statistics before and after preprocessing can
be found in Table 1.

For the parallel data, the data preprocessing
pipeline are as follows: remove exact duplicate
parallel data → ratio-based filters → embeddings-
based filters. The ratio-based filters remove sen-
tences based on sentence length, token length, char-
acter to token ratio, pair token ratio, and pair length
ratio. Exact details on these criteria are explained
in (Cruz, 2023). Similar to last year’s paper, we
tokenized and detokenized sentences using Sacre-
Moses2 before and after running our filters, respec-
tively. The embeddings-based filter filters data
based on the cosine similarity of a sentence pair
using LaBSE (Feng et al., 2022). Using the method-
ology of (Cruz, 2023), pairs with a cosine similarity
0.7 ≤ s ≤ 0.96 are kept.

For monolingual data, we combined the mono-
lingual data of the target language and the target

1https://wiki.apertium.org/wiki/Install_
Apertium_core_using_packaging

2https://github.com/alvations/sacremoses
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source→target Pairs Words (source) Words (target) % Kept
spa→arg 58,284 746,567 733,985 100
spa→arg Filtered 21,362 181,523 190,724 36.6
spa→arg Filtered + BT† 81,195 849,031 857,111 -
spa→ast 13,393,052 310,197,263 298,687,582 100
spa→ast Filtered 620,168 6,495,284 6,442,051 4.6
spa→ast Filtered + BT 920,168 11,758,510 11,629,822 -
spa→arn 2,032,440 14,046,448 13,891,193 100
spa→arn Filtered 779,615 4,807,268 5,020,187 38.4
spa→arn Filtered + BT† 1,079,615 8,835,974 9,040,705 -

Table 1: Statistics of OPUS parallel data before and after filtering and the addition of backtranslated data (BT). The
% Kept is the percentage of pairs left after filtering ("-" means not applicable). † means BT data was generated via
Apertium.

side of parallel data from OPUS and then removed
exact duplicates. We used this monolingual data to
train language models for each target language.

After preprocessing of parallel and monolingual
data, we apply train and validation split of 95% and
5%, respectively.

Lastly, for the training corpus of the tokenizer,
we combined the filtered parallel data of all three
language pairs. We used this combined data to
learn a shared BPE (Sennrich et al., 2016b) vocab-
ulary that spans Spanish, Aragonese, Aranese, and
Asturian consisting of 31,960 tokens using Senten-
cePiece (Kudo and Richardson, 2018). This shared
vocabulary was used by all models for generating
submissions to WMT24. We used this approach
as the four languages belong to the same language
family.

2.3 Augmenting Data with Backtranslation
We augmented the filtered training data using back-
translation (Sennrich et al., 2016a). For each
language pairs for both source→target (except
spa→ast) and target→source directions, Apertium
3.9.6 was used to generate BT data. Due to
the lack of direct translation support for some
language pairs in Apertium, the translation for
arg→spa went through the following translation
path: Aragonese → Catalan → Interlingua → Span-
ish3. For arn→spa, it goes through Aranese →
Catalan → Spanish4.

Translation from Asturian to Spanish is not sup-
ported by Apertium. Alternatively, we used the
ast→spa model that was originally intended for
noisy channel reranking (NCR), a technique which
will be explained in Section 2.5, to generate BT

3Apertium language codes: arg-cat→cat-ina→ina-spa
4Apertium language codes: oc_aran-ca→cat-spa

data. For decoding, we used combined top-k and
nucleus sampling:

δk∑

i=0

P (ŷ
(T )
i |x; ŷ(T−1)) · δtemp ≤ δp (1)

where δk is the top values considered for top-k
sampling, δtemp is temperature, δp is the maximum
total probability for nucleus sampling. For these
hyperparameters, we used the same values as (Cruz,
2023) which are as follows: δk = 50, δtemp = 0.7,
and δp = 0.93.

Once the BT data for each language pairs and
translation direction are generated we took a subset
in different ways. For BT data for training Direct
Translation Models (spa→arg/ast/arn), we used all
the generated BT data for spa→arg since it’s less
than 300K. For BT data of spa→ast and spa→arn,
we keep the longest 300K sentences.

For BT data for training Channel Translation
Models (arg/ast/arn→spa), we used all the BT data
for arg→spa since it’s less than 100K. For ast→spa,
we randomly sampled 100K sentences. Due to
time constraints, we did not generate BT data for
arn→spa.

2.4 Model Training
For each language pair, we trained three types of
models: a Direct Translation Model, a Chan-
nel Model, and a Language Model which will
be detailed in the following subsections. These
three models will be combined via Noisy Chan-
nel Reranking (Yee et al., 2019) which will be ex-
plained in Section 2.5.

2.4.1 Direct Translation Models
For each direct translation models
(spa→arg/arn/ast), we trained encoder-decoder

893



Transformer architecture (Vaswani et al., 2017)
from scratch with and without BT data. We
used the large variant of transformers which has
213M parameters5. We describe two training
configurations: tf-large60k which was trained for
60,000 steps of which 3,000 are warmup steps,
and tf-large100k which was trained for 100,000
steps of which 10,000 are warmup steps. Training
settings with “-plusbt” suffix indicates that the
model was trained on a mixture of provided
training data and BT data. Otherwise, it indicates
the model is trained only on the provided training
data. For example, tf-large100k-plusbt means
the model was trained on the mixture of provided
training data and BT data for 100,000 steps of
which 10,000 are warm up steps.

For both settings and all language directions,
unless stated otherwise, we used the same hyperpa-
rameters in Table 2. For generating WMT24 sub-
missions, we used models trained on tf-large100k-
plusbt setting as our Direct Translation Model.

2.4.2 Channel Translation Models
For the channel translation models
(arg/arn/ast→spa), we used the same archi-
tecture and hyperparameters as the direct
translation models, except it was trained on
tf-large60k-plusbt setting, batch size/max tokens
of 10,000, and learning rate of 7e-4 (arg→spa and
arn→spa) and 5e-5 (ast→spa). These were used
as channel models for noisy channel reranking
which is explained further in Section 2.5 and
for performing hyperparameter sweeps of noisy
channel reranking parameters detailed in Section
2.6.

2.4.3 Language Models
We trained monolingual language models for
Aragonese, Aranese, and Asturian from scratch
using the decoder-only part of the original Trans-
former architecture as described in (Vaswani et al.,
2017). We used the base variant which has 65M
parameters6. For all languages, we used Adam
optimizer (Kingma and Ba, 2017) with β1=0.90,
β2=0.98. We trained for a maximum of 250,000
steps of which 4,000 are warmup steps. The
warmup initial learning rate is 1e-7 and the max
learning rate is 5e-4 and then decayed following
an Inverse Square root learning rate schedule. The
batch size / max tokens is 40,000, and the dropout

5Fairseq model code: transformer_wmt_en_de_big
6Fairseq model code: transformer_lm

Training Hyperparameters
Vocab Size 31,960
Tied Weights Yes
Dropout 0.3
Attention Dropout 0.1
Weight Decay 0.0
Label Smoothing 0.1
Optimizer Adam
Adam Betas β1=0.90, β2=0.98
Adam ϵ ϵ=1e-6
Learning Rate 5e-5
LR Schedule Inverse Sqrt
Batch Size 8,000 tokens

Table 2: Fixed hyperparameters for direct translation
models.

is 0.1. These models were used in noisy channel
reranking which is explained further in Section 2.5
and for performing hyperparameter sweeps of noisy
channel reranking parameters detailed in Section
2.6.

2.5 Noisy-Channel Reranking
Similar to (Cruz, 2023), we experimented with us-
ing Noisy Channel Reranking (Yee et al., 2019)
to improve translations. This works by using a
direct translation model (source→target), chan-
nel model (target→source) and a monolingual lan-
guage model (target only) to rescore every candi-
date translation token during beam search decoding.
The score of the candidate translation token ŷ

(T )
i at

time step T is recomputed using a linear combina-
tion of all three models:

P (ŷ
(T )
i |x; ŷ(T−1))

′
=

1

t
log(P (y|x̂(T−1))

+
1

s
[δch log(P (x|ŷ(T−1))

+δlm log(P (ŷ(T−1)))]

(2)

where t is the length of target sentence y and s
is the length of source sentence x which serves as
debiasing terms. The δch and δlm are weights of the
channel model and language model, respectively,
which controls the influence of the models to the
final score. For this paper, both δch and δlm were
set to 0.5

2.6 Hyperparameter Sweeping
Similar to (Cruz, 2023), we utilized a Bayesian
hyperparameter search to find an optimal value for
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BLEU
Setting FLORES+ dev WMT24 Test

spa→arg spa→ast spa→arn spa→arg spa→ast spa→arn
Apertium (baseline) 70.3 22.6 42.4 - - -

No BT; No NCR 18.3 23.9 8.7 13.4 16.8 7.2
No BT; w/ NCR 21.3 24.0 8.7 16.5 16.9 7.2
w/ BT; No NCR 35.4 24.4 14.4 26.7 17.5 7.7
w/ BT; w/ NCR 37.1 24.3 13.7 28.2 17.2 7.2

Table 3: BLEU scores of various system configurations compared to Apertium. BT and NCR denotes backtranslated
data and noisy channel reranking, respectively. Highest score per language pair are in bold.

Model configuration BLEU
tf-base100k w/o NCR 19.3
tf-base100k w/ NCR 20.7
tf-base100k-plusbt w/o NCR 36.4
tf-base100k-plusbt w/ NCR 37.6
tf-large100k w/o NCR 18.3
tf-large100k w/ NCR 21.3
tf-large100k-plusbt w/o NCR 35.4
tf-large100k-plusbt w/ NCR 37.1

Table 4: Ablation results for spa→arg. NCR denotes
noisy channel reranking.

length penalty. The length penalty sweep was per-
formed for 137 iterations sampling from a uniform
distribution with minimum 0.0 and maximum 2.0.
Hyperparameter sweeping was performed using
the tf-large60k-plusbt direct translation models
with noisy channel reranking enabled on the Span-
ish to Aragonese language pair. Translations for
the hyperparameter sweep were generated from the
copy of FLORES+ (Team et al., 2022) found in the
PILAR (Galiano-Jiménez et al., 2024) repository7.
The results of this sweep were used on all language
pairs. We performed the sweep on spa→arg only
and on a tf-large60k-plusbt model due to hard-
ware and time constraints. Our sweeps showed that
setting length penalty to 1.726 is optimal.

3 Results and Discussion

In this section, we discuss the results of our ex-
periments and discuss our findings. Experiments
were performed using the copy of FLORES+ (Team
et al., 2022) found in the PILAR (Galiano-Jiménez
et al., 2024) repository were computed using Sacre-
BLEU8 (Post, 2018).

7https://github.com/transducens/PILAR
8SacreBLEU signature:

nrefs:1|case:mixed|eff:no|tok:flores101|smooth:exp|version:2.4.2

Setting BLEU
whole mid long

no-BT (baseline) 8.2 8.4 8.2
short-BT 10.5 9.6 10.4
mid-BT 11.6 10.7 11.6
long-BT 14.3 11.4 14.3

Table 5: BLEU scores per length group of BT data.
long-BT outperforms all other settings in all test setups.

For all translations, we used the following de-
coding hyperparameters: top_k=50, top_p= 0.93,
temperature=0.7, beam=5. Additional hyperparam-
eters are specified per experiment.

3.1 Comparison Against Baselines

We compare our system against Apertium 3.9.6.
Results are listed in Table 3. We observe that Aper-
tium yields the highest BLEU score for spa→arg
and spa→arn. For spa→ast, the systems trained
with BT data both outperform the Apertium base-
line.

Our method performs worst on the spa→arn
language pair while it performs best for spa→arg.
However for both of these pairs our system is out-
performed by Apertium. From this we can con-
clude that our current pipeline cannot overcome
the low resource nature of these language pairs in
order to close the gap with Apertium. For spa→ast,
we were able to outperform Apertium with a differ-
ence of 1.8 BLEU.

3.2 Ablations

We perform an ablation study by varying model
size, use of BT data, and use of noisy channel
reranking. Due to hardware and time constraints,
we only perform our ablations in the spa→arg di-
rection. Results are summarized in Table 4.

We observe that the addition of BT data and
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Figure 1: Sequence length distribution of the target side of the train (filtered) and test set per language pair. spa-arn
has the least overlap between train and test and has the most short examples in training data which hints why the
BLEU score is relatively lower compared to other language pairs.

noisy channel reranking resulted in an increased
BLEU score. Using both strategies yields the high-
est BLEU score for both base and large model
sizes. It is notable that the base model with both
BT data and noisy channel reranking yields the
highest BLEU score in our ablation study. We
speculate that this be due to the large model having
too many parameters for the given task or a lack
of data. Another reason is that spa-arn is relatively
easier compared to other language pairs because
the source and target are more similar with each
other as shown in Table 6. More experiments are
needed to confirm these.

3.3 Adding Longer Examples Improves
BLEU Better than Shorter Examples

For the spa→arn baseline model (No BT), we ob-
served a BLEU score of 8.7 on FLORES+ dev set.
One possible explanation for the low score is the
mismatch between the length distribution of train-
ing and test data. We observed that the training data
is comprised mostly of short examples while the
FLORES+ dev set is relatively longer (see Figure
1). We hypothesize that adding longer examples
to the training set will improve BLEU score, espe-
cially on longer examples.

To provide evidence for the hypothesis, we gen-
erated BT data of size 100,000 for different length
groups namely, short-BT (1-10 words), mid-BT
(11-20 words), long-BT (20+ words). We mixed
the BT data with the training data then trained
a model for each setup. We trained each model
for 50,000 of which 5,000 are warmup steps. We
used the same training hyperparameters as in Ta-
ble 2. For fair comparison, we trained a baseline
model (no-BT) using the same training hyperpa-
rameters. For generating the translations, we did
not use noisy channel reranking and we fix the

length penalty to 1.0. The results are summarized
in Table 5.

The result shows that long-BT gives an abso-
lute BLEU score improvement of +6.1 over base-
line, followed by mid-BT (+3.4), and then short-BT
(+2.3). This tells us that while augmenting with BT
data generally improves the performance, strate-
gically adding more long examples can give the
most improvements in a resource-constrained set-
ting. To strengthen this claim further, we performed
a fine-grained test by grouping FLORES+ dev set
by length groups (mid/long). For this experiment,
we did not include the short length group because
it only contains 3 examples after grouping. The
results shows that long-BT gives the most improve-
ments on mid and long test groups, followed by
mid-BT and short-BT (see Table 5). This suggests
that training on longer sequences also improves
performance on shorter sequences.

While this experiment shows empirical results
that adding longer examples improves the over-
all BLEU score better than adding shorter exam-
ples, it does not say something about the quality
and diversity of the text. It is possible that these
findings might not hold if the long examples are
of low quality. Another possible explanation on
why long-BT outperforms its shorter counterparts
is because, with the same number of examples
of 100,000, long-BT contains more tokens than
short-BT and mid-BT. To further solidify the claim
that adding longer examples improves the overall
BLEU score better than adding shorter examples,
more experiments are needed where total token
count per length group are equal or close to each
other.
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Language Pair JS (generated) ↑ ED (generated) ↓ JS (ground truth) ↑ ED (ground truth) ↓
spa→arg 0.34 0.59 0.34 0.57
spa→arn 0.23 0.69 0.13 0.83
spa→ast 0.44 0.44 0.23 0.76

Table 6: Average Jaccard similarity (JS) and average normalized edit distance (ED) between source and generated
translations and ground truth translations. Results confirm our observatoin that our system is regurgitating Spanish
source sentences in the spa→ast direction. Results also suggest that the Spanish and Aragonese sentences in the
FLORES+ dev set are more similar to each other compared to others.

3.4 Regurgitation of Spanish Sentences in
Generated Translations

We observed that our model was producing some
translations that were only slightly altered versions
of the source Spanish sentence. To empirically
evaluate the extent of this problem for our system,
we compare the BPE tokenized source Spanish
sentences of the FLORES+ dataset from PILAR
to the corresponding generated translations made
by our system and the corresponding ground truth.
We compared this system via two metrics: Jaccard
similarity (JS) and normalized edit distance (ED).
To compute the two metrics between two BPE en-
coded sentences S1 and S2, we get the set of tokens
of each sentence T1 and T2 and compute Jaccard
similarity as

JS =
|T1 ∩ T2|
|T1 ∪ T2|

and normalized edit distance as

ED =
D(S1, S2)

max(|S1|, |S2|)
where D(S1, S2) denotes token-level Levenshtein
distance between BPE encoded sentences S1 and
S2. We divide by the maximum length between S1

and S2 to ensure that we get a value between 0 and
1. Results of this analysis are summarized in Table
6.

We observe that spa→ast shows the highest av-
erage Jaccard similarity and the lowest normalized
edit distance among language pairs for generated
translations; however, the corresponding metrics
for the spa→ast ground truth translations tell a dif-
ferent story. Ground truth translations for spa→ast
show a lower Jaccard similarity and a higher nor-
malized edit distance, indicating that we may be
regurgitating Spanish sentences.

Below is a sample of a Spanish sentence together
with a generated Asturian translation which ex-
hibits regurgitation and the corresponding ground

truth translation. Notice how the generated transla-
tion is closer in similarity to the Spanish sentence
than the correct Asturian translation. In the below
example, “S -” is the source spanish sentence, “H
-” is the generated Asturian translation, “T -” is
the ground truth Asturian translation, “J -” is the
jaccard similarity compared to the source Spanish
sentence, and “E -” is the normalized edit distance
compared to the source Spanish sentence. All sen-
tences are BPE encoded.
S - _Apenas _pas adas _las _11: 00 _h , _los

_integrantes _de _la _manifestación _bloque
aron _la _circulación _del _car ril _de
_White h all _que _va _hacia _el _norte .

H - _Ap enes _pasa es _les _11: 00 _h , _los
_integrantes _de _la _manifestación _blo qui
aron _la _circulación _del _car ril _de
_White h all _que _va _escontra ' l _norte .

J - 0.553
E - 0.303

T - _X usto _depués _de _les _11: 00, _los
_manifestantes _blo qui aron _el _trá ficu
_nel _sentíu _norte _en _White h all .

J - 0.244
E - 0.833

For spa→arg, Jaccard similarity and normal-
ized edit distance are similar for both generated
translations and ground truth translations. We
note that this language pair has the highest Jac-
card similarity and lowest normalized edit distance
between its source Spanish sentences and ground
truth Aragonese translations. This indicates that
there is a degree of similarity between the Spanish
and Aragonese sentences in the dataset which may
explain why the spa→arg model exhibited the high-
est BLEU score in our baseline comparison. We
provide a sample below where the source Spanish
sentence is similar to the ground truth Aragonese
translation.
S - _En _el _partido , _Nadal _acumul ó _un _8

8% _de _puntos _ne tos _y _ganó _76 _en _el
_primer _servicio .

H - _En _o _parti to , _Nadal _acumul ó _un _8
8% _de _puntos _ne tos _y _ganó _76 _en _o
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_primer _servicio .
J - 0.792
E - 0.174

T - _En _o _parti u , _Nadal _acumul ó _un _8
8% _de _puntos _ne tos _y _ganó _76 _en _o
_primer _servicio .

J - 0.792
E - 0.174

We plot the histogram of Jaccard similarity and
normalized edit distance for all language pairs in
Figures 2, 3, and 4.

3.5 Character Set Analysis

We observe that our generated translations do not
contain all characters present in the ground truth as
shown in Table 7. For all languages, the missing
characters are present in the training data with the
exception of Õ for Asturian and Aragonese. All
missing characters constitute less than 1% of the
training data which may explain why they were not
learned by our models.

4 Conclusions

We detailed our constrained system for translat-
ing from Spanish to Aragonese (spa→arg), Arane-
se/Occitan (spa→arn), and Asturian (spa→ast).
These systems were trained from scratch on con-
strained data, augmented by backtranslated (BT)
data. Translations were further improved by uti-
lizing Noisy Channel Reranking. This approach
outperformed Apertium on the spa→ast translation
direction. Our ablation study for spa→arg showed
that utilizing backtranslation and noisy channel
reranking improves BLEU score. However, more
experiment is needed for other language pairs. Our
ablation experiment also suggests that smaller mod-
els are capable enough for spa→arg, at least for this
train and test set.

We investigated the cause of low BLEU score
for spa→arn despite having more data (after filter-
ing) than spa→arg and spa→ast. We linked it to
the train-test mismatch of spa-ast data in terms of
sequence length. We also found that adding longer
backtranslated data improves overall BLEU score
even in shorter sequences.

Lastly, we observed that our model for spa→ast
was regurgitating Spanish sentences in Asturian
translations and that characters with low frequen-
cies in the training data are not being learned by
our models.

Limitations

We are unable to evaluate whether the translations
we generate are syntactically or semantically sound
due to the fact that none of us speak Spanish,
Aragonese, Asturian, or Aranese/Occitan.
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Language Missing Characters Frequency in Training Data # Characters in Training Data
Aragonese » « ] & õ [ Õ 1,583 4,713,907
Aranese/Occitan & « » Ç Ò Õ U+0301 ’ 96,233 36,014,337
Asturian " Õ Ú U+1E24 h. – — ’ 56,798 42,897,857

Table 7: Characters present in ground truth translations but missing in generated translations together with their
frequency in training data compared to the total number of characters in training data. Unicode symbol code in
italics listed when a character is unsupported by LATEX. All missing characters constitute less that 1% of the training
data.

(a) (b)

Figure 2: Distribution of Jaccard similarity and normalized edit distance for spa→arg of source sentences vs
generated translations and ground truth translations. We can see that the distributions for both Jaccard similarity and
normalized edit distance almost entirely overlap. Taken together with the means from Table 6, these show that any
regurgitation our model exhibits can also be seen in the ground truth test data.

(a) (b)

Figure 3: Distribution of Jaccard similarity and normalized edit distance for spa→arn of source sentences vs
generated translations and ground truth translations. We can see in (a) that while Jaccard similarity of generated
translations vs. source Spanish sentences is higher compared to that of ground truth translations vs. source Spanish
sentences, they both tend to be less than 0.4. In (b), we see that while normalized of generated translations vs.
source Spanish sentences is lower compared to that of ground truth translations vs. source Spanish sentences, they
both tend to be greater than 0.6. This indicate low amounts of regurgitation in the case of our spa→arn system.
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(a) (b)

Figure 4: Distribution of Jaccard similarity and normalized edit distance for spa→ast of source sentences vs
generated translations and ground truth translations. We see in (a) that the Jaccard similarity of generated Asturian
translations compared to source Spanish sentences is higher than that of ground truth translations compared to
source sentences. In (b), we see that the normalized edit distance of generated translations compared to source
sentences is lower than that of ground truth vs. source sentences. This indicates that our model is regurgitating more
Spanish words rather than translating to Asturian.
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