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Abstract

In recent years, large pre-trained language mod-
els (PLMs) have achieved remarkable perfor-
mance on many natural language processing
benchmarks. Despite their success, prior stud-
ies have shown that PLMs are vulnerable to
attacks from adversarial examples. In this
work, we focus on the named entity recogni-
tion task and study context-aware adversarial
attack methods to examine the model’s robust-
ness. Specifically, we propose perturbing the
most informative words for recognizing enti-
ties to create adversarial examples and investi-
gate different candidate replacement methods
to generate natural and plausible adversarial
examples. Experiments and analyses show that
our methods are more effective in deceiving
the model into making wrong predictions than
strong baselines.

1 Introduction

Existing methods for adversarial attacks mainly fo-
cus on text classification (Liang et al., 2018; Garg
and Ramakrishnan, 2020), machine translation (Be-
linkov and Bisk, 2018; Cheng et al., 2019), reading
comprehension (Jia and Liang, 2017; Wallace et al.,
2019), etc. A slight perturbation to the input can
deceive the model into making wrong predictions
or leaking important information. Such adversarial
attacks are widely used to identify potential vul-
nerabilities and audit the model robustness. How-
ever, in the context of named entity recognition
(NER), these adversarial attack methods are inade-
quate since they are not customized for the labeling
schemes in NER (Lin et al., 2021). This is es-
pecially problematic as the generated adversarial
examples can be mislabeled.

Prior studies have proposed various context-
aware attacks (i.e., perturb non-entity words) and
entity attack (i.e., perturb only entity words) meth-
ods to address this issue. Despite their success,
most existing methods randomly select words to

Figure 1: Comparison between adversarial attack with
and without perturbing informative words.

perturb without taking the linguistic structure into
consideration, limiting their effectiveness to con-
sistently generate natural and coherent adversarial
examples. Some words in a sentence are more
informative than others in guiding the model to
recognize named entities. For instance, in Figure 1,
the word “rackets" can provide more information
than the word “tournament" to infer the entity type
of “Wilson". Perturbing such words can be effec-
tive in leading to more incorrect model predictions.

In this work, we explore the correlation between
model vulnerability and informative words. We
aim to conduct adversarial attacks by perturbing the
informative words to expose the potential vulnera-
bilities of NER systems. To this end, we investigate
different candidate selection methods to determine
which words should be perturbed, including part-of-
speech (POS) tagging, dependency parsing, chunk-
ing, and gradient attribution. To demonstrate the ef-
fectiveness of our proposed methods, we adapt two
commonly-used candidate replacement approaches
to replace the selected candidate words: synonym
replacement (i.e., replace with a synonym) and
masked language model replacement (i.e., replace
with a candidate generated from a masked language
model). We conduct experiments on three corpora
and systematically evaluate our proposed methods
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Figure 2: The pipeline of the proposed context-aware adversarial attack, including candidate selection to determine
which words to perturb and candidate replacement for replacing candidate words.

with different metrics. Experimental results and
analyses show that our proposed methods can ef-
fectively corrupt NER models.

In summary, our contributions are as follows:
1. We investigate different methods to perturb

the most informative words for generating ad-
versarial examples to attack NER systems.

2. Experiments and analyses show that the pro-
posed methods are more effective than strong
baselines in attacking models, posing a new
challenge to existing NER systems.

2 Related Work

Adversarial attacks have been receiving increasing
attention in the field of NER. Prior work in this
research direction can be generally classified into
two categories: i) context-aware attacks and ii) en-
tity attacks. In the context-aware attacks, only the
non-entity context words are modified. To achieve
this, Lin et al. (2021) proposed to perturb the orig-
inal context by sampling adversarial tokens via a
masked-language model. Simoncini and Spanakis
(2021) presented multiple modification methods to
substitute, insert, swap, or delete characters and
words. Wang et al. (2021) studied to create adver-
sarial samples by concatenating different sentences
into a single data point. For entity attacks, the
entity words are modified while the non-entity con-
text words are kept unchanged. In particular, Lin
et al. (2021) exploited an external dictionary from
Wikidata to find replacements for entity instances.
Simoncini and Spanakis (2021) studied the use of
the SCPNs (Iyyer et al., 2018) to generate candi-
date paraphrases as adversarial samples. Reich et al.
(2022) proposed leveraging expert-guided heuris-
tics to modify the entity tokens and their surround-
ing contexts, thereby altering their entity types as

adversarial attacks. Wang et al. (2021) performed
adversarial attacks by swapping words or manipu-
lating characters.

3 Context-aware Adversarial Attack

In this work, we propose different methods to gen-
erate adversarial samples for the purpose of au-
diting the model robustness of NER systems. In
the following sections, we describe the two main
stages involved in this process: 1) candidate se-
lection, which aims to determine which candidate
words should be replaced; and 2) candidate replace-
ment, which aims to find the best way to replace
candidate words. The pipeline of adversarial data
generation is shown in Figure 2.

3.1 Candidate Selection

To effectively attack the model, we consider per-
turbing the most informative words for recognizing
entities. We investigate the following automated
methods to select such words as candidates:

• Random (RDM): select non-entity words at
random from the sentence as candidate words.

• POS tagging (PST): select semantic-rich non-
entity words as candidate words based on their
POS tags. Here, following Lin et al. (2021),
we consider selecting adjectives, nouns, ad-
verbs, and verbs.

• Dependency parsing (DEP): select the non-
entity words related to entity instances, includ-
ing ascendants and descendants, as candidate
words based on dependency parsing.

• Chunking (CHK): select the non-entity
words in the noun chunks that are close to en-
tity instances as candidate words to preserve
both semantic and syntactic coherence.

• Gradient (GDT): select the non-entity words
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Table 1: Comparison between different candidate selection methods using synonym replacement. RDM, PST, DEP,
CHK, GDT are short for random, POS tagging, dependency parsing, chunking, and gradient candidate selection,
respectively. The x-axis denotes the number of perturbed words while the y-axis denotes the difference in F1 scores.

according to the integral of gradients. We use
Integrated Hessians (Janizek et al., 2021) to
determine the importance of non-entity words
based on their feature interactions with entity
instances, and select the words with higher
importance scores to perturb.

To obtain linguistic features, including part-of-
speech tags, dependency parsing, and chunking,
for our proposed method, we use the statistical
model from spaCy 1 to process text. Then we se-
lect the candidate words to perturb based on this
information. For GDT, we use the gradient of the
pre-trained BERTbase model (Devlin et al., 2019)
to determine the importance of each word.

3.2 Candidate Replacement
Perturbations in text at the character-level can be
easily detected and defended by spell check and cor-
rection (Pruthi et al., 2019; Li et al., 2020). There-
fore, we exclusively focus on the word-level per-
turbations in this work. Simply replacing a word
with another one at random can lead to noisy data.
For instance, in Figure 1, the label for “Wilson" is
changed from ORG to PER by replacing “rackets"
with “guidance", which has a conflict with its orig-
inal gold label. Therefore, to keep original labels
valid, we investigate the following two approaches
to replace candidate words:

1https://github.com/explosion/spaCy

• Synonym Replacement: Using synonyms to
replace candidate words as adversarial sam-
ples can guarantee the preservation of text
semantics and make it hard to be perceived
by human investigation. We use the WordNet
(Miller, 1998) dictionary to find synonyms for
candidate words, and then randomly select
one of them as a replacement.

• Masked Language Model Replacement:
The masked language model (MLM) attempts
to predict the masked words in the given in-
put sequence. In our work, we first create
masks for candidate words, and then use a
masked language model RoBERTabase (Liu
et al., 2019) to generate a replacement based
on the context. This approach is capable of
preserving both semantics and syntax in the
generated adversarial samples.

4 Experiments

In this section, we present the experimental setup
and results. We systematically conduct experi-
ments to evaluate our proposed methods on three
corpora with different metrics and provide analyses
to better understand their effectiveness.

4.1 Experiment Setup

Datasets We evaluate the proposed methods on
three commonly-used corpora for NER tasks, in-
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Text
Similarity

Performance
Decrease

Table 2: Comparison between different candidate replacement methods when perturbing five words in each sentence.
RDM, PST, DEP, CHK, GDT are short for random, POS tagging, dependency parsing, chunking, and gradient
candidate selection, respectively.

cluding CoNLL03 (Tjong Kim Sang and De Meul-
der, 2003), OntoNotes5.0 (Pradhan et al., 2013),
and W-NUT17 (Derczynski et al., 2017). The data
statistics are summarized in Appendix A.

Victim Model The victim model consists of the
BERTbase (Devlin et al., 2019) as the base model
and a linear layer as the classifier to assign NER
tags. The details of hyper-parameters and fine-
tuning are described in Appendix B.

Evaluation Metrics To examine the effective-
ness of our proposed methods, we consider the
following metrics for evaluation:

• Textual Similarity (Sim.): cosine similarity
between adversarial examples and the corre-
sponding original examples using the Univer-
sal Sentence Encoder (Giorgi et al., 2021). A
higher textual similarity score indicates that
more semantics are preserved.

• Performance Decrease (∆Perf.): the differ-
ence in F1 scores between adversarial exam-
ples and their corresponding original exam-
ples. A higher performance decrease indicates
that the model makes more mistakes.

4.2 Main Results

We compare candidate selection and replacement
methods by perturbing the same number of words
in the sentences. Below we present experimental
results and summarize our findings:

Candidate Selection V.S. Metrics From the re-
sults in Table 1, we observe that the model perfor-
mance decreases rapidly under adversarial attacks.
When perturbing five words in the sentence, the F1
scores decrease by 10% ~20%. Among these attack
methods, GDT and RDM are more effective at de-
ceiving the model into making wrong predictions.
When performing attacks with RDM, however, the
text similarity is sacrificed in exchange for a greater
performance decrease, which can potentially make
adversarial examples easier to detect. Additionally,
it is worth noting that DEP is also effective at a
slight perturbation, although it can only result in a
smaller performance decrease as we increase the
number of perturbed words. In terms of textual
similarity and performance decrease, PST is the
least effective method in most cases.

Candidate Replacement V.S. Metrics The com-
parison between different candidate replacement
methods is shown in Table 2. In general, compared
to masked language model replacement, synonym
replacement can achieve a higher textual similar-
ity, indicating that more semantics are preserved in
adversarial examples. However, its performance de-
crease is quite limited. At a slightly lower textual
similarity, masked language model replacement
leads to a much larger performance decrease. Be-
sides, both replacement methods are relatively less
effective on the W-NUT17 corpus. Compared to
the text from CoNLL03 and OntoNotes5.0 which
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is long and formal, the text from W-NUT17 is short
and noisy as it contains many misspellings and
grammar errors. For this reason, the model can-
not rely too heavily on context when making pre-
dictions, limiting the effectiveness of adversarial
attacks on this corpus.

5 Conclusion

In this work, we study adversarial attacks to ex-
amine the model robustness using adversarial ex-
amples. We focus on the NER task and propose
context-aware adversarial attack methods to perturb
the most informative words for recognizing enti-
ties. Moreover, we investigate different candidate
replacement methods for generating adversarial ex-
amples. We undertake experiments on three cor-
pora and show that the proposed methods are more
effective in attacking models than strong baselines.

Limitations

The proposed methods require linguistic knowl-
edge (e.g., part-of-speech tags and dependency
parsing) to processing the text. Most existing tools
can automate this process for English. However,
these tools may need to be extended to support
other languages, especially for minority languages.
Additionally, the proposed methods maybe not ap-
plicable with low computational resources or in
real-time scenarios.
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A Data Statistics

Table 3 shows data statistics of the NER datasets
we used in our experiments:

Split CoNLL03 OntoNotes5.0 W-NUT17
Train 14,041 115,812 3,394
Validation 3,250 15,680 1,009
Test 3,453 12,217 1,287

Total 20,744 143,709 5,690

Table 3: Data Statistics of CoNLL03, OntoNotes5.0 and
W-NUT17 corpus.

B Hyper-parameters and Fine-tuning

For the victim model, we use the BERTbase (De-
vlin et al., 2019) without changing any hyper-
parameters. The learning rate is set to 5e-5 and
the training batch size is set to 8. We train the
model using the Adam optimizer (Kingma and Ba,
2015) with a weight decay 0.01 for 10 epochs on
CoNLL03 and OntoNotes5.0 data and 20 epochs
on W-NUT17 data. For the hardware, we use 8
NVIDIA V100 GPUs with a memory of 24GB.
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