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Abstract

Maintenance short texts are invaluable unstruc-
tured data sources, serving as a diagnostic
and prognostic window into the operational
health and status of physical assets. These
user-generated texts, created during routine or
ad-hoc maintenance activities, offer insights
into equipment performance, potential failure
points, and maintenance needs. However, the
use of information captured in these texts is hin-
dered by inherent challenges: the prevalence of
engineering jargon, domain-specific vernacular,
random spelling errors without identifiable pat-
terns, and the absence of standard grammatical
structures. To transform these texts into ac-
cessible and analysable data, we introduce the
MaintNorm dataset, the first resource specifi-
cally tailored for the lexical normalisation task
of maintenance short texts. Comprising 12,000
examples, this dataset enables the efficient pro-
cessing and interpretation of these texts. We
demonstrate the utility of MaintNorm by train-
ing a lexical normalisation model as a sequence-
to-sequence learning task with two learning ob-
jectives, namely, enhancing the quality of the
texts and masking segments to obscure sensi-
tive information to anonymise data. Our bench-
mark model demonstrates a universal error re-
duction rate of 95.8%. The dataset and bench-
mark outcomes are made available to the public
under the MIT license.1

1 Introduction

Industrial user-generated content, such as mainte-
nance work order (MWO) records, logbooks, and
incident reports, constitutes a rich repository of
data. This data is pivotal for applications in predic-
tive maintenance, safety analysis, process optimisa-
tion, and product life cycle management (Brundage
et al., 2021). Specifically, in the maintenance sec-
tor, MWO short texts (MST) are instrumental in

1https:github.com/nlp-tlp/maintnorm

documenting the condition of assets and the main-
tenance activities performed, as well as informing
the design of maintenance strategies. These texts,
typically authored by technicians, serve as critical
input for future maintenance endeavours. Further-
more, reliability engineers scrutinise these histori-
cal records to gain a deeper understanding of equip-
ment failure modes (Lee et al., 2023), enhance
root cause analysis (Valcamonico et al., 2024), and
develop key performance indicators such as mean-
time-to-failure and remaining useful life (Lukens
et al., 2019; Bikaun and Hodkiewicz, 2021).

A

AN426 REPLACE BROKEN ALT BOLT
<id> replace broken alternator bolt
R/H Steering Cyl Pin & Brg
right hand steering cylinder pin and bearing

B

air con belt u/s
air conditioner belt unserviceable
1000H Mech Insp Carry Roll No 2 RH DN9817
<num> hour mechanical inspection carry roller
number <num> right hand <id>

C

ZH6907 C/out pos 2 tyre
<id> change out position <num> tyre
Left cab aircon e/leakage flt
left cabin air conditioner electrical leakage fault

Table 1: User-Generated maintenance short texts for
heavy mobile equipment across three companies, with
bold blue text indicating normalised and masked forms.

Consider Table 1, which showcases examples
of MSTs from various companies. These texts,
often characterised by technical jargon, domain-
specific vernacular, and frequent linguistic inaccu-
racies, pose significant challenges regarding data
quality and processing efficiency (Hodkiewicz and
Ho, 2016; Brundage et al., 2021). The resultant am-
biguity and lack of standardisation impede effective
pattern recognition and trend analysis, impacting
maintenance decision-making.

MSTs frequently contain sensitive information,
ranging from equipment identifiers to personnel
names, raising confidentiality concerns (Brundage
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et al., 2021). Consequently, there is a scarcity of
publicly available industrial (as opposed to gov-
ernmental) raw MST datasets, with limited exam-
ples like MaintNet comprising 7,000 MSTs, and a
dataset on excavators with 5,486 MSTs.2,3 Indus-
trial companies’ hesitation to release data, driven
by concerns over identification (Sikorska et al.,
2020) and a lack of appropriate anonymisation
tools, significantly hamper the advancement of
technical language models in this critical commer-
cial sector.

Lexical normalisation, the process of transform-
ing non-standard words and phrases into their stan-
dard forms (Han and Baldwin, 2011), provides a
promising solution for addressing the issue of poor
text quality in MSTs. While there has been ex-
tensive research on the lexical normalisation of
social media texts (Baldwin et al., 2015; van der
Goot et al., 2021), industrial maintenance texts
have not received similar attention. Currently, state-
of-the-art lexical normalisation has been achieved
by formulating it as a sequence-to-sequence learn-
ing task whereby a sequence with potentially non-
canonical (noisy) tokens is transduced into a se-
quence of canonical (clean) tokens (Samuel and
Straka, 2021).

This paper addresses the need to enhance
the quality of MST data and simultaneously de-
identify sensitive information through a sequence-
to-sequence learning approach. Our annotated cor-
pora and model are designed to generate high-
quality, normalised sequences with strategically
masked segments to obscure sensitive or semanti-
cally redundant information. This is particularly
crucial in knowledge elicitation for tasks such as
information extraction annotation, which rely on
domain expertise due to the tacit knowledge needed
for interpreting these short texts, whom have lim-
ited time resources.

This paper’s primary contributions are threefold:

• We introduce the first publicly available an-
notated corpus for lexical normalisation and
masking of maintenance short texts,

• We systematically characterise the lexical
noise present in maintenance short texts, and

• We demonstrate the efficacy of sequence-to-
sequence language modelling in performing

2MaintNet Large Technical Database
3Prognostics Data Library: Excavator MWOs

lexical normalisation and masking as a unified
task using a structured encoding scheme.

2 Background and Related Work

Lexical normalisation, an important task in natu-
ral language processing, involves converting non-
standard or informal language—such as abbrevi-
ations, colloquialisms, and misspellings—into a
more standard form. This process is especially
pertinent in the context of MSTs, where the preva-
lence of informal language poses unique challenges
(Brundage et al., 2021). Lexical normalisation, as
defined by Han and Baldwin (2011), aims to sys-
tematically transform non-standard words to their
standard equivalents, thereby enhancing readabil-
ity and facilitating more effective processing for a
range of downstream natural language processing
applications.

MSTs are key information sources in asset-
intensive organisations. Numerous studies, such as
those by Hodkiewicz and Ho (2016), Saetia et al.
(2019), Gao et al. (2020), and Akhbardeh et al.
(2020), have explored the unique lexical challenges
these texts present. These works have primarily fo-
cused on enhancing MST quality for downstream
tasks, employing methods ranging from heuris-
tic approaches to normalisation dictionaries and
distance-matching algorithms such as Levenshein
(Levenshtein et al., 1966). However, these ap-
proaches often lack robustness and adaptability
in broader maintenance contexts. Moreover, the
confidentiality concerns associated with MSTs re-
main challenging to address, resulting in a scarcity
of publicly available datasets, as highlighted by
Akhbardeh et al. (2020) and Brundage et al. (2021).

In contrast to work on MSTs, the field of lex-
ical normalisation has evolved significantly over
time. Early insights into the challenges and method-
ologies were provided by foundational studies like
those of Han and Baldwin (2011) and Baldwin et al.
(2015). The work of van der Goot et al. (2021) ex-
panded these insights to multilingual normalisation,
demonstrating the task’s complexity across differ-
ent languages. The task of lexical normalisation
has witnessed a paradigm shift from non-sequence-
to-sequence models, such as MoNoise by van der
Goot (2019), to more sophisticated sequence-to-
sequence models (Samuel and Straka, 2021). This
transition, highlighted in the work of Lourentzou
et al. (2019), marks a critical juncture in the history
of lexical normalisation.
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The formulation of lexical normalisation as a
sequence-to-sequence learning task has led to the
use of pre-trained knowledge representations as ex-
plored by Muller et al. (2019), and the joint normal-
isation and masking of e-commerce dialogues by
Nguyen and Cavallari (2020). More recently, the
Shared Task on Multilingual Lexical Normalization
(van der Goot et al., 2021) saw the extensive appli-
cation of sequence-to-sequence learning predomi-
nately through Transformer-based models leverag-
ing pre-trained language models such as (Samuel
and Straka, 2021)’s state-of-the-art token-by-token
normalisation using ByT5 (Xue et al., 2022) which
represents the cutting-edge in the field.

The convergence of these developments in MSTs
and lexical normalisation underscores the necessity
for adaptable, robust models capable of manag-
ing the complexities of maintenance texts. Our re-
search aims to leverage state-of-the-art techniques
to improve the lexical quality of MSTs, focusing on
joint normalisation and masking to enhance both
readability and confidentiality.

3 Data Description

The MaintNorm dataset comprises 12,000 MSTs
sourced from three major Australian mining com-
panies.4 These texts pertain to heavy mobile equip-
ment (HME) – machinery used for operations like
excavation, material handling, and earth transporta-
tion, including but not limited to haul trucks, doz-
ers, excavators, water trucks, and drill machines.
The content of these texts encompasses both rou-
tine and ad-hoc maintenance tasks, both planned
and executed, as well as insights into the condition
of the HME systems and their individual compo-
nents. Table 1 provides examples sampled from
each company.

3.1 Selection

To create the MaintNorm dataset, maintenance
texts were randomly selected from a comprehen-
sive repository belonging to the three participating
organisations. Each organisation contributed 4,000
texts, ensuring equal representation. The primary
objective of this diverse collection is to investigate
the feasibility of developing a normalisation and
masking model that can effectively operate across
different organisational contexts for a given asset
type. This approach also helps to discern whether

4We use A, B, and C to refer to these companies to ensure
their privacy.

specific models, attuned to the unique linguistic
characteristics of each organisation, yield superior
results. Detailed corpus statistics, including aver-
age text length, vocabulary size, and total token
count for each company, are presented in Table 2.

3.2 Preprocessing

The preprocessing of the MaintNorm corpus was
minimal to preserve the raw characteristics of the
texts, the texts only underwent basic tokenisation
based on whitespace prior to annotation.

3.3 Annotation

Annotation is performed by the first author due to
resource constraints. The annotator is experienced
with lexical normalisation and industrial mainte-
nance. The annotation tool LexiClean (Bikaun
et al., 2021) was used for all lexical normalisa-
tion and masking. An overview of the annotated
corpora is presented in Table 5. Similar to Han
and Baldwin (2011), the following guidelines were
used in the annotation process:

Spelling corrections. Canonical forms are
adopted to rectify spelling discrepancies within
the corpus, such as omissions, redundancies, or in-
correct characters. For example, abbreviations like
‘eng’ are converted to their full form ‘engine’.

True casing. The dataset is standardised using
true casing, where inappropriate capitalisation is
corrected. For instance, ‘REPLACE ENGINE’ is
modified to ‘replace engine’, except for proper
nouns that retain capitalisation, e.g., ‘UL123 tele-
remote’ to ‘UL123 Tele-Remote’. Acronyms are
cased according to their standard usage.

Abbreviation expansion. Maintenance text ab-
breviations are expanded to their full lexical forms
to facilitate uniformity and clarity. For instance,
‘c/o’ becomes ‘change out’.

Concatenation and tokenisation. Incorrectly
concatenated multi-word expressions are separated
(e.g., ‘repair/replace’ to ‘repair / replace’, ‘250hr’
to ‘250 hour’), enhancing the granularity for down-
stream tasks such as information extraction.

Token masking. In addition to normalisation,
token-level entity masks (tags) were applied to text
spans using the scheme in Table 4. The use of
token-level entity tags is twofold. First, due to con-
fidentiality concerns, the texts have been prepro-
cessed to obfuscate any identifiers about assets, or-
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Company Length (µ ± σ) Vocab Size Tokens Modified Norm Only Mask Only

A 5.2 (1.2) 2,561 20,944 - - -
5.4 (1.3) (↑ 3%) 1,106 (↓ 57%) 21,591 (↑ 3%) 3,998 115 45

B 5.5 (1.4) 3,100 21,919 - - -
6.2 (1.8) (↑ 13%) 1,360 (↓ 56%) 24,690 (↑ 13%) 3,946 192 321

C 5.1 (1.5) 4,168 20,559 - - -
5.5 (1.8) (↑ 7%) 2,048 (↓ 51%) 22,114 (↑ 7%) 3,431 1,879 150

A+B+C 5.3 (1.4) 7,612 63,422 - - -
5.7 (1.7) (↑ 8%) 2,872 (↓ 62%) 68,395 (↑ 8%) 11,375 2,116 586

Table 2: Summary of MaintNorm corpus statistics: This table displays statistics for 4,000 texts from each company,
focusing on heavy mobile equipment. It includes token-based text length and vocabulary size. Greyed rows represent
post-normalisation and masking statistics. Changes due to normalisation and masking are indicated by arrows and
percentages (↑/↓ X%). The right-hand section of the table delineates the text transformations, categorising them as
Modified for texts undergoing normalisation or masking, Norm Only for texts exclusively normalised, and Mask
Only for texts solely subjected to masking.

N M Example

1 1 Single word normalisation, e.g., ‘eng’ to
‘engine’.

1 > 1 Single to multi-word normalisation, e.g.,
‘c/o’ to ‘change out’.

1 0 Removal of superfluous characters, e.g.,
‘T’ in ‘replace engine T’ where ‘T’ is
erroneous.

> 1 1 Concatenation of fragmented words,
e.g., ‘eng ine’ to ‘engine’.

> 1 > 1 Combining fragmented words into multi-
word normalisations, e.g., ‘eng ineoi l’
to ‘engine oil’.

Table 3: Examples of N:M normalisation transforma-
tions in the MaintNorm dataset.

ganisations, personnel, etc, using token-level mask-
ing, which was applied in the annotation process.
Second, tags such as <num> and <date> reduce the
semantic duplication of texts for downstream an-
notation tasks such as information extraction as
maintenance short texts can be generated in very
similar fashions such as ‘replace pump 1’ and ‘re-
place pump 2’, here the semantics is the same but
there is redundancy when annotating for other tasks.
Hence, it is desirable to normalise texts like these
to a unified form such as ‘replace pump <num>’,
which represents this structure generally.

3.4 Post-processing and Obfuscation

Two steps were performed post-annotation to en-
sure the texts were suitable for model training and
public release. First, all token-level entity masks
were used to mask the respective tokens, e.g. an
<id> entity masks on the “PU001" in “replace
PU001" would subsequently convert the text into
“replace <id>". This process was performed for
all masking tokens. Simultaneously, we ensure

Mask Description

<id> Asset identifiers e.g. ENG001, rd1286
<sensitive> Sensitive organisation-specific informa-

tion such as proprietary systems, third-
party contractors, names of personnel,
etc.

<num> Numerical digits e.g. 8, 7001223
<date> Numerical and phrase representations of

dates e.g. 10/10/2023, 8th Dec

Table 4: MaintNorm token masking scheme used for
privacy preservation and redundancy removal.

that masked tokens are obfuscated before public
release. We do this by mapping over each text and
identifying any masked tokens, which we map to an
arbitrary representation of the same semantic type.
For example, for <id>, we copy the alphanumerical
and cased structure of the original identifier. For
<date> and <num>, we copy the structure but per-
mutate it. For <sensitive>, we detect the n-gram
size and correspondingly impute a non-sensitive
value. These actions ensure that the dataset cap-
tures the original essence of the task whilst main-
taining a level of desensitisation to allow public
release of the dataset.

3.5 Dataset Split

For the purpose of evaluating the generalisation
of lexical normalisation and masking within our
dataset, we divided it into training, development,
and testing sets. Adhering to the conventional split
ratio of 80/10/10, our dataset is segmented into
3,200 training texts and 400 texts each for develop-
ment and testing. Furthermore, we organised the
data into distinct company-specific segments (A, B,
C) and an aggregated dataset (A+B+C). This seg-
mentation strategy aims to investigate whether the
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A B C A+B+C

N
or

m
al

is
at

io
n

O
pe

ra
tio

ns Char. addition 3,022 4,704 2,781 10,507
Char. removal 191 939 247 1,377

Char. rearrangement 145 118 233 358
Char. replacement 209 508 231 950

Token expansion 662 2,264 1,281 4,207
Token removal 194 97 195 486

Titled cased 69 118 97 284
Partial casing added 8 6 9 23
All casing removed 13,826 9,214 7,098 30,138

All casing added 4 29 36 69
No change 1,978 7,187 10,173 19,338

N
or

m
.

Tr
an

sf
or

m
s 1:1 17,898 12,233 8,694 38,825

1:N 662 2,264 1,281 4,207
N:1 194 97 195 486

N:M 2 4 2 8
N:0 7 15 6 28

M
as

ki
ng

O
ps

. <id> 4,055 3,916 1,116 9,087
<sensitive> 44 25 155 224

<num> 573 1,349 847 2,769
<date> 9 2 49 60

Table 5: Summary of the normalisation and masking operations applied to maintenance short texts for each
organisation and combined. Tokens can have multiple normalisation operations performed upon them; for example
“tlerEMOTE" which is normalised to “Tele-Remote" would have the operations character addition (“tleremote"
→ “tele-rEMOTE"), all casing removed (“tele-rEMOTE" → “tele-remote" ) and title casing (“tele-remote" →
“Tele-Remote"), representing a 1:1 normalisation transformation (“tlerEMOTE" → “Tele-Remote"). Norm. and
Ops. refer to normalisation operations, respectively.

linguistic patterns are consistent across different
companies and if such uniformity could enhance
the performance of a single, universally-trained
model. A positive outcome could encourage in-
dustrial entities to collaboratively address this task,
yielding mutual advantages.

4 Method

4.1 Task Formulation

In this work, we conceptualise the task of lexical
normalisation and masking as an auto-regressive
sequence-to-sequence learning task. Our approach
involves training a Transformer-based encoder-
decoder model to transform potentially noisy in-
put sequences into their normalised counterparts.
This methodology is an extension of the approach
outlined by De Cao et al. (2020), which employs
sentinel brackets for demarcating entity boundaries
in auto-regressive entity linking.

We have adapted this approach to suit our spe-
cific requirements. Our model defines boundaries
around both non-canonical words and phrases, as
well as their canonical equivalents. For instance,
an input sequence such as ‘repl ace eng oil’ is nor-
malised to ‘replace engine oil’. Using our encod-
ing scheme, the sequence-to-sequence model rep-

resents this transformation in its output space as ‘{
repl ace } [ replace ] { eng } [ engine ] oil’. The
model’s output undergoes post-processing to yield
the correctly formatted output, ‘replace engine oil’,
by extracting canonical elements and unchanged
tokens, as shown by ‘{ repl ace } [ replace ] { eng }
[ engine ] oil’. This encoding technique and its ap-
plication to various normalisation transformations
is exemplified in Table 6.

O
pe

ra
tio

n 1:1 { reply } [ replace ]
N:1 { repl ace } [ replace ]
1:M { repleng } [ replace engine ]
N:0 { $$ } [ ]
N:M { rep&re pl } [ repair and replace ]

Table 6: Examples of the normalisation encoding
scheme applied to different normalisation operations.
Curly brackets ({}) denote a non-canonical span,
whereas square brackets ([]) denote a canonical span.

While directly translating into normalised se-
quences (e.g., ‘repl ace eng oil’ → ‘replace engine
oil’) may seem straightforward, it poses challenges
for evaluation (see Appendix B). Ensuring align-
ment between input and output sequence transla-
tions is a complex task, as highlighted in the work
of Sabet et al. (2020). Our encoding scheme di-
rectly addresses this challenge by explicitly cap-
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turing these transformations. Furthermore, our ap-
proach is particularly effective in token masking,
as it naturally extends to an N:M operation (e.g., ‘{
UD01 } [ <id> ]’, ‘{ blwnEN1 } [ blown <id> ]’).

This methodology contrasts with the token-by-
token normalisation strategy of Samuel and Straka
(2021). Our approach requires only a single pass
through the model, with the output sequence au-
toregressively generated via beam search decoding.
Using this approach, each normalisation is condi-
tioned on one another through the context provided
by preceding tokens. This means that the model
considers the entire input sequence and the part
of the output sequence it has generated to predict
each subsequent token. This contextual awareness
allows for more cohesive and contextually appro-
priate normalisations, as the model can use the
broader context to resolve ambiguities and infer
the most probable normalisation for each token.
In contrast, a token-by-token approach normalises
each token in isolation, potentially missing the nu-
ances of wider textual context.

4.2 Prefix Constrained Decoding
Building on the framework established by De Cao
et al. (2020), our study also explores the use of
prefix-constrained decoding to curtail the potential
for model hallucination and ensure the alignment
of input and output sequences. Prefix-constrained
decoding is a technique where text generation is
guided by constraints such as prefix tries or heuris-
tics to ensure generated output adheres to specific
conditions. This technique can be applied to main-
tain the alignment of input and output sequences
during the decoding process for lexical normalisa-
tion. In contrast to entity linking, which relies on
a closed set of semantic types to constrain genera-
tion, we experiment with this technique to limit the
model to uncontrolled generation when generating
a normalisation or masking pair; otherwise, it must
copy the input sequence verbatim. The efficacy
of prefix constraints in enhancing linguistic tasks,
including entity recognition (Josifoski et al., 2022)
and semantic parsing (Scholak et al., 2021), has
been well-documented, supporting their applica-
tion in our study.

4.3 Model Implementation and Parameters
We implement our sequence-to-sequence model
as a Transformer encoder-decoder using the pre-
trained foundational model of ByT5 (Xue et al.,
2022). ByT5, a token-free model, operates directly

on byte sequences, enhancing its capacity to handle
various languages and character sets without tok-
enization. All experiments and models are imple-
mented using PyTorch and the Transformers library
(Wolf et al., 2020) using PyTorch Lightning (Fal-
con, 2019) executed on a single Nvidia GeForce
RTX 4080 graphics card. We use google/byt5-
small, containing 299M parameters, fine-tuned in
batches of 16 sequences.5 Model optimisation uses
AdamW with cross-entropy loss and a linear learn-
ing rate scheduler. Both source and target sequence
lengths are set to 256 tokens, and the model runs
for 20,000 steps with early stopping based on vali-
dation loss, employing a patience of 5 epochs. Our
experiments with prefix constraints use logit renor-
malisation.

4.4 Evaluation
To measure the generalisation ability of a sequence-
to-sequence model trained on our corpus, we evalu-
ate them on the intrinsic word-level error reduction
rate (E.R.R.), precision, and recall (van der Goot,
2019).6 Here, E.R.R. is formulated as:

E.R.R. =
TP − FP

TP + FN
(1)

E.R.R. values span from -1 to 1, with negative
values indicating predominant incorrect normali-
sations by the model. A zero score signifies no
alterations made by the model, and a score of 1 de-
notes perfect normalisation. In practice, we use the
script provided as part of the Multilingual Shared
Task (van der Goot et al., 2021), where we translate
the encoded sequences into the traditional newline
and tab-separated normalisation format for evalua-
tion.

4.5 Baselines
To evaluate the performance of our sequence-to-
sequence model on the MaintNorm corpus, we
compare it against three normalisation methods:

Leave-As-Is (LAI): The LAI technique is charac-
terised by its direct approach, retaining the original
input without modification, resulting in a nominal
E.R.R. of 0%.

Most Frequent Replacement (MFR): MFR em-
ploys a lexical database that associates each uni-
gram (individual word) in the input with its most
commonly observed replacement in the training

5HuggingFace google/byt5-small
6See Appendix A for evaluation details.
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Company Extra Data MaintNorm (ours) LAI MFR ÚFAL

P R E.R.R. P R E.R.R. P R E.R.R. P R E.R.R.

A N 99.9 95.8 95.2 0 0 0 99.9 91.7 90.9 99.8 92.0 91.0
Y 99.9 98.1 96.6 0 0 0 99.9 91.7 90.9 99.9 92.1 91.3

B N 98.9 94.6 90.0 0 0 0 99.8 93.9 90.2 99.6 91.0 85.5
Y 99.7 98.1 96.6 0 0 0 99.8 93.9 90.2 99.6 91.7 86.5

C N 99.4 95.2 89.1 0 0 0 99.5 89.9 78.6 99.4 86.6 71.9
Y 99.5 96.8 92.4 0 0 0 99.5 89.9 78.6 99.1 86.6 71.5

A+B+C - 99.7 97.5 95.8 0 0 0 99.8 93.0 89.4 99.5 90.2 85.0

Table 7: Summary of experiments evaluated on the respective hold-out test sets. Extra data refers to using the
combined training data (A+B+C) but evaluated on the specific portions test-set. P, R, and E.R.R. refer to the
precision, recall, and error reduction rate, respectively. Bold denotes the best-performing metric for each company.

corpus. During operation, the system substitutes
each word with its prevalent counterpart. When an
input word is novel and lacks a precedent in the
database, it remains unaltered.

ÚFAL: The ÚFAL model (Samuel and Straka,
2021), based on the ByT5 pretrained language
model (Xue et al., 2022), employs a token-by-
token normalisation approach. It normalises each
word separately, encapsulating it within specific
tags for processing by ByT5, aligning with ByT5’s
pre-training objectives. Recognised as a lead-
ing method for multilingual lexical normalisation
(van der Goot et al., 2021), ÚFAL was fine-tuned
for our experiments using its default settings but
without implementing its data augmentation strate-
gies, which we reserve for future exploration.

5 Results

In this section, we examine the outcomes derived
from developing the MaintNorm annotated corpus
and our implementation of sequence-to-sequence
modelling for lexical normalisation and masking
within MSTs. The central objectives of this analy-
sis are to address two key questions: Firstly, what
are the defining characteristics of lexical noise
present in MSTs? Secondly, how effective is the ap-
plication of sequence-to-sequence language mod-
elling in executing lexical normalisation and mask-
ing as a combined task?

5.1 MaintNorm Corpus Construction and
Characterisation

In constructing the MaintNorm corpus, a signifi-
cant observation across all three participating com-
panies was their non-standard approach to cas-
ing. As highlighted in Table 5, the most prevalent
normalisation operation involved the complete re-

moval of casing, indicative of an excessive use of
capital letters. It is noteworthy, however, that while
fully capitalised tokens are rare within the corpus,
they do occur and typically denote domain-specific
acronyms such as ‘TECO’ (technically completed)
and ‘HAZ’ (hazard), which are essential for domain
experts.

Regarding the nature of normalisation transfor-
mations, MaintNorm primarily exhibits minimal
N:M transformations, mirroring the tendencies ob-
served in the WNUT corpus (Baldwin et al., 2015).
This trend suggests a predominance of simpler,
more direct normalisation methods within the cor-
pus. Notably, a significant portion of the texts in
MaintNorm, accounting for 94.8%, underwent at
least one normalisation or masking operation. This
rate was particularly high in two companies (A and
B), where almost all texts in their respective por-
tions of the corpus were subject to these operations.
This extensive normalisation and masking process
led to a substantial reduction (>50%) in vocabu-
lary size across all three companies. This reduction
underscores the impact of normalisation and mask-
ing on the diversity and complexity of the corpus
vocabulary.

Table 5 further reveals that the characteristics of
noise and masking in the maintenance communi-
cation language are consistent across companies
despite their independent creation. The distribu-
tions of normalisation and masking operations high-
light similar characteristics, such as the prevalence
of normalisation through 1:1 transformations with
high frequencies of character additions, whilst also
having a high proportion of masks in the forms of
<id>. Although <sensitive> and <date> masks
appeared less frequently than <id> and <num>, their
inclusion is crucial for maintaining privacy.
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5.2 Sequence-to-Sequence Modelling

Here, we discuss the aspects of generalisation for
a sequence-to-sequence model on the MaintNorm
corpus. An overview of the experimental results is
outlined in Table 7.

Comparative analysis with baseline methods.
The sequence-to-sequence language model show-
cased notable efficiency in unified lexical normal-
isation and masking, achieving an E.R.R. above
90% across all experiments (refer to Table 7). Al-
though the MFR baseline displayed unexpectedly
robust performance, the difference between it and
our model highlights the presence of non-mappable
tokens. This suggests that the task of normalisation
and masking may not be exceedingly challenging,
which, albeit potentially less stimulating for re-
searchers, is encouraging for practitioners aiming
to implement these findings.

In contrast to our approach, MFR, akin to meth-
ods in prior studies (Hodkiewicz and Ho, 2016;
Saetia et al., 2019; Akhbardeh et al., 2020), relies
on dictionary replacement and cannot adapt to dy-
namic contexts with variable vocabularies. Using
the same foundational model as the ÚFAL model
allows for directly comparing encoding schemes.
The results in Table 7 indicate superior perfor-
mance of our encoding scheme across all dataset
segments, likely due to its ability to contextually
process the entire sequence during decoding, unlike
ÚFAL’s token-by-token method.

Although our model and encoding scheme are
effective, we anticipate further enhancements by in-
creasing the size of the pretrained language model
and the number of beams in beam search decod-
ing, which was limited to three due to resource
constraints.

A B C

Incorrect Predictions 56/2,059 48/2,202 70/2,050
Normalisation Errors 50 46 53
Masking Errors 6 2 7

Table 8: Error analysis of the best-performing models
on their respective test sets from Table 7.

Comparative analysis: individual vs combined
models. Evaluating model performance for indi-
vidual companies against a unified model reveals
distinct advantages in adopting a single, combined
approach. This consolidated model notably en-
hances normalisation and masking capabilities, ev-

idenced by a 1.4-6.6 E.R.R. improvement when
leveraging additional training data. Although the
single model approach appears superior, the per-
formance of organisation-specific models, which
closely rival the combined model using only a third
of the data, is also noteworthy. Identifying the ex-
act contributors to these performance disparities
is challenging. However, qualitatively examining
the corpora indicates common language use across
the companies. This linguistic similarity suggests
that merging the datasets creates a more substantial
and varied corpus, enhancing the model’s ability to
generalise effectively.

Analysis of model errors. Despite achieving
high precision and recall in normalisation and
masking (see Table 7), our models are not entirely
error-free, with error rates ranging from 2.2% to
3.4%. Table 8 outlines these errors. A closer qual-
itative analysis of incorrect predictions revealed
that many errors originate from hapaxes and hapax
legomena, causing inaccuracies or missed normali-
sation and masking opportunities. A common error
pattern involves incorrectly handling concatenated
corrections (e.g., ‘&8on’ → ‘and <num> on’, ‘80A’
→ ‘<num> amperage’). Enhancing the MaintNorm
corpus with a more diverse range of text samples
will likely improve model performance by introduc-
ing a wider variety of linguistic scenarios, reducing
the potential for such errors.

Effectiveness of encoding scheme and prefix-
constrained decoding. Our model’s high per-
formance on the MaintNorm corpus, using a spe-
cific encoding scheme for lexical normalisation and
masking, demonstrates its effectiveness in an au-
toregressive sequence-to-sequence framework. Al-
though a notable challenge arises in data-scarce sce-
narios, the model struggles with encoding scheme
assimilation, necessitating prefix-constrained de-
coding (see Table 9 in Appendix C). This issue
could be mitigated through techniques such as pre-
fine-tuning the models on synthetically generated
corpora, following approaches similar to Dekker
and van der Goot (2020) and Samuel and Straka
(2021), and curriculum learning (Bengio et al.,
2009). Our main experiments, as detailed in Ta-
ble 7, achieve optimal results without constraints,
benefiting from a robust training dataset.

While prefix-constrained decoding can effec-
tively prevent hallucination and deviations from
the encoding scheme, thereby avoiding misalign-
ments between input and output sequences, its im-
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plementation is challenging. One notable issue is
the degradation in error reduction efficiency, likely
caused by logit renormalisation over constrained
tokens. Our findings suggest that while the encod-
ing scheme is effective for larger datasets of short
texts, its application to smaller or complex corpora
warrants further research. Although untested on
other normalisation corpora like those in the multi-
lingual shared task (van der Goot et al., 2021), we
believe in the scheme’s potential adaptability and
plan to explore this in future work.

6 Conclusion and Future Work

In this paper, we have introduced the first corpus
for normalising and masking maintenance short
texts (MST), comprising 12,000 texts from the Aus-
tralian mining and mineral processing sector. Our
findings show that a unified approach to lexical nor-
malisation and masking, using an encoder-decoder
Transformer-based language model, delivers high
performance on MSTs, surpassing existing state-
of-the-art on our custom-constructed corpus. This
methodology offers a viable pathway for industrial
organisations to manage risk while releasing data,
thereby facilitating research on technical language
models in this vital commercial sector. We have
made our code, corpus, and models publicly ac-
cessible under the MIT license. Looking ahead,
we envisage expanding the scope of this dataset to
encompass diverse maintenance contexts and en-
riching it with annotations from a broader range of
annotators, which we believe will further augment
its utility.
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A Description of Evaluation Metrics

To assess the effectiveness of our models, we
used precision (P), recall (R), and error reduction
rate (E.R.R.), following the methodology outlined
in (van der Goot, 2019). These metrics offer a
comprehensive evaluation of test accuracy. Preci-
sion measures the accuracy of the normalisation
model’s replacements, while recall determines the
model’s ability to identify and correctly normalise
anomalies. Together, these metrics complement
the E.R.R., addressing its limitations in distin-
guishing between over-normalisation and under-
normalisation. The definitions of precision, recall,
and error reduction rate are as follows:

P =
TP

TP + FP
(2)
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R =
TP

TP + FN
(3)

E.R.R. =
TP − FP

TP + FN
(4)

Here, the TP (True Positive), FP (False Positive),
and FN (False Negative) values are evaluated at the
token level. They are conceptualised as follows:

• True Positive (TP): Words that required nor-
malisation and were accurately normalised by
the model.

• False Positive (FP): Words incorrectly nor-
malised by the model despite not requiring
normalisation.

• False Negative (FN): Words that required nor-
malisation but were either inaccurately nor-
malised or overlooked by the model.

B Description of Alignment Errors

Alignment errors arise when there’s a mismatch
between the input portion of the model’s prediction
and the ground truth, posing challenges to accu-
rate evaluation. These errors can occur even when
the model’s normalisation predictions are techni-
cally correct, leading to complexities in the assess-
ment process. The following examples demonstrate
how alignment errors manifest within our encoding
scheme:

1. Input: “repl eng oil"

2. Output (aligned, ground truth):
“{ repl } [ replace ] { eng } [ engine
] oil"

3. Output (aligned, incorrect):
“{ repl } [ replacement ] eng oil"

4. Output (misaligned, correct):
“replace { eng } [ engine ] oil"

5. Output (misaligned, incorrect):
“rep { eng } [ engine ] oil"

In these cases, converting the encoded outputs to
the normalisation format of the shared task (van der
Goot et al., 2021) results in alignment issues. For
instance, example (4) shows a misalignment where
the ground truth aligns “repl" to “replace", but the
misaligned output aligns “replace" to “replace". As
a result, such instances are incompatible with the
evaluation script used in the shared task.

C Analysis of Alignment Errors

In Table 9, we analyse the correlation between
the size of the corpus and alignment errors in our
model. It’s clear that a sufficiently large corpus en-
hances the model’s comprehension of the encoding
scheme, reducing alignment errors. This is primar-
ily due to the model’s improved ability to avert
hallucination and the creation of incorrect struc-
tures in normalisation. On the other hand, with
smaller corpora, the model is more prone to align-
ment errors. To counter this in smaller datasets,
we implement prefix constraints in our encoding
scheme. This method steers the model towards
more precise alignment, thereby ensuring output
accuracy even with limited data.

However, our analysis also reveals that while
prefix-constrained decoding is beneficial for align-
ment, it may affect the model’s overall error-
reduction capabilities. This relationship between
alignment accuracy and error reduction under pre-
fix constraints poses an interesting area for future
research.

Train Fraction Train Size Alignment Errors

0.1 960 179/1,200 (14.9%)
0.2 1,920 67/1,200 (5.6%)
0.3 2,880 56/1,200 (4.7%)
0.4 3,840 10/1,200 (0.8%)
0.5 4,800 7/1,200 (0.5%)
0.6 5,760 11/1,200 (0.9%)
0.7 6,720 4/1,200 (0.3%)
0.8 7,680 4/1,200 (0.3%)
0.9 8,640 0/1,200 (0.3%)
1.0 9,600 0/1,200 (0.0%)

Table 9: Overview of alignment errors in relation to
corpus size, using a model trained on the combined
corpus (A+B+C) and tested with a beam size of 3.
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