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Abstract

The extraction of valuable information from the
vast amount of digital data available today has
become increasingly important, making named
entity recognition models an essential compo-
nent of information extraction processes. This
emphasizes the importance of understanding
the factors that can compromise the perfor-
mance of these models. Many studies have
examined the impact of data annotation errors
on NER models, leaving the broader implica-
tion of overall data quality on these models
unexplored. In this work, we evaluate the ro-
bustness of three prominent NER models on
datasets with varying amounts and types of
noise. The results show that as the noise in the
dataset increases, model performance declines,
with a minor impact for some noise types and a
significant drop in performance for others. The
findings of this research can be used as a foun-
dation for building more robust NER systems
by enhancing dataset quality beforehand.

1 Introduction

Named entity recognition (NER) is an NLP task
that identifies and categorizes mentions of named
entities in texts into predefined categories within a
given application context (Ehrmann et al., 2021).
NER models are used in many downstream appli-
cations and are becoming an integral part of their
implementation (Li et al., 2022). These models
must be trained on task-specific data to work well
with a specific application because an NER model
learns the relationship between the data elements
and applies this knowledge to find similar terms in
the unseen data. If the model is trained on poor-
quality data, it may not learn well and most likely
fail to recognize or assign the wrong category to
the named entities in new, unseen data.

The term “data quality” is used in information
systems to measure the goodness of the data in
fulfilling the requirements of a user (Wang and

Strong, 1996). Data is considered high quality
if it is suitable for the intended application and
does not contain errors that can undermine its use
(Hassenstein and Vanella, 2022).

With the advancement and easy access to digi-
tal technology, data in different domains is widely
available and growing exponentially (Hassenstein
and Vanella, 2022), thus creating the need to under-
stand the fitness of the data for the desired applica-
tion. This research aims to analyze the impact of
various noise types to understand the effect of data
quality on the performance of NER models.

The concept of data quality was discussed in
detail by Wang and Strong (1996), and the idea
was to look at the quality of data from the user’s
perspective and divide data quality into various cat-
egories to understand their origin and impact. This
study analyzes the effect of four different types of
noise: spelling errors, typo errors, optical character
recognition (OCR) errors, and sentence shortening
errors (SSE). These errors fall into the following
data quality categories (Wang and Strong, 1996):

• The intrinsic quality dimension includes a sub-
category called accuracy. It is concerned with
the data’s reliability and integrity. Spelling,
typos, and OCR errors fall under this category,
as the accuracy of any textual dataset is di-
rectly affected by characters, words, and even
numeric values.

• Completeness is a quality dimension in the
contextual category used to determine whether
data is complete and appropriate for the cho-
sen task. When sentence-shortening errors
occur, context information is lost, affecting
the data’s completeness.

Many NER-specific ML models do not compare
the performance based on the dataset quality. After
a simple data cleaning step, the main focus is on
finding suitable hyperparameters during training.
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There is no denying that hyperparameter tuning is
an essential part of a well-trained model. However,
all data-dependent models must be trained on high-
quality data to make reliable future predictions on
unseen data (Budach et al., 2022). The limited
number of research (Hamdi et al., 2020; Bodapati
et al., 2019) about the impact of data quality on
NER systems creates a natural curiosity to ques-
tion whether a model trained on good-quality data
will make better predictions than a model trained
on noisy data and if the NER-based NLP models
should include data quality checks. This study ob-
serves the behavior of various models and tests
their robustness with variable proportions of each
error type and their combination on the CoNLL
2003 (Tjong Kim Sang and De Meulder, 2003),
WNUT 16 (Strauss et al., 2016) and Ontonotes v5
(Pradhan et al., 2013) datasets. Specifically, the
focus of this research is to answer the following
questions:

• RQ1: What impact does data quality have on
the performance of each NER model?

• RQ2: How do different types of individual
noises affect NER model performance?

• RQ3: What effect does combining different
types of noise have on the performance of an
NER model?

• RQ4: What effect do different datasets with
different noise types have on the performance
of an NER model?

We published the code of our study in https:
//github.com/HPI-Information-Systems/
ner-text-quality-impact

2 Background

The effect of OCR errors on the predictive capabil-
ity of four NER models was investigated in a study
by Hamdi et al. (2020). The results indicate a sub-
sequent decline in the model’s performance when
trained on datasets containing OCR errors. The
study also suggests that understanding the impact
of the frequency of this error type before applying
the models can enhance the performance of NER
models. The study by Bodapati et al. (2019) inves-
tigates the robustness of NER models with capital-
ization errors. It demonstrates that the NER models
trained with the customary training procedures do
not perform well when tested against textual data

with either capital or small-cased letters, and the
model’s predictive capability suffers greatly. Multi-
ple studies have also been conducted to understand
the impact of different types of noise on AI sys-
tems, and their results show that many state-of-the-
art models are susceptible to even slight variations
in data (Budach et al., 2022; Belinkov and Bisk,
2018; Náplava et al., 2021; Gudivada et al., 2017).
When the performance of character level and word
level processing models is compared, the former
models are more resilient to changes in individual
characters and can still understand the meaning and
context of a word if there is a minor modification
in the characters of the word, such as spelling or
typo errors (Heigold et al., 2017).

Gudivada et al. (2017) also discusses some of the
significant issues that machine learning (ML) mod-
els face as a result of poor data quality in the ML
pipeline at two stages: training and testing. Even
only a few outliers in the training dataset have been
shown to cause instability in the learning process
of the model and show how noisy data affects the
prediction capabilities of the model. Al Sharou
et al. (2021) discuss the intricate relationship be-
tween data quality and NLP systems, providing a
distinction between different aspects of the noise
types. It categorizes noise into two categories, good
and bad, and explains how it can help NLP models
make better predictions. It suggests that an error
that seems detrimental to one kind of task can in-
crease the accuracy of an NLP model curated for
another domain. So, the data cleaning task should
not be fixed for every NLP model, and without un-
derstanding the impact of various error types, it is a
challenge to build reliable data validation systems.

With numerous studies demonstrating that data
quality affects model performance, this study fo-
cuses primarily on analyzing the impact of various
error types and their combination in the training
and prediction phase of an NER model. The find-
ings of this study can aid in the development of data
cleaning or validation systems that are required be-
fore feeding any input data to an ML pipeline.

3 Noise Types in Text

In the real world, noise is present in all textual data.
Different noise types have distinct origins, thus
affecting the functioning of every model differently.
The following noise types have been chosen to
study their effect on NER model performance.
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3.1 Spelling Errors

A correctly spelled word in any language is one
whose spelling matches the dictionary spelling or,
if not in the dictionary, is widely accepted by well-
known writers and most speakers (Al Sharou et al.,
2021). Any variation in these known spellings falls
under the category of spelling errors.

3.2 Typographical Errors

Typo errors occur due to mistakes in typing and are
also called typos or misprints (Shah and de Melo,
2020). As more people use the internet to connect
and communicate, the emphasis is not on writing
everything carefully, resulting in many typos in on-
line texts. These errors may appear to be spelling
mistakes, but they are distinct because typos oc-
cur due to fast typing or fingers slipping on the
keyboard.

3.3 OCR Errors

Optical character resolution, or OCR, is a tech-
nological process of converting various digitized
documents into a format that computers understand
(Kissos and Dershowitz, 2016). The documents
generated by the OCR process can be edited like
any document typed on a computer. Two contribut-
ing factors to OCR errors are the poor image qual-
ity of the documents used and the use of different
training instances for the OCR image classifier.

3.4 Sentence Shortening Errors

Sentence shortening errors or cut-off (Shen et al.,
2020) is a prevalent noise in textual data where a
certain amount of words are missing due to infor-
mal writing, very commonly seen on social media
platforms or in automatic speech recognition sys-
tems (ASR) (Cunha Sergio and Lee, 2021). Such
partial removal is used to check the robustness of
context-based models, especially language models,
such as BERT (Devlin et al., 2019), which infer
the meaning of a word in the context of the entire
sentence.

4 Models

This section briefly describes the three well-known
NER models selected for this study. Each model
uses a different architecture to identify and extract
named entities. The first is a machine learning
model, and the next two are deep learning models.

4.1 Condition Random Field

Conditional random fields (CRFs) is a discrimi-
native machine learning model that predicts data
points related to each other (Sutton and McCallum,
2010). A discriminative model uses the input data
to predict the output class label by creating a di-
rect mapping between the input data and the output
label (Ng and Jordan, 2002). Patil et al. (2020)
explains that the CRF model uses an undirected
graphical model for the named entity identification.
This graph connects each observation to other ob-
servations without any specific direction. Given
the context of an observation, CRFs calculate the
probability of it being a particular named entity.
The CRF uses the concept of feature functions to
know about the various features of each variable
and thus understand the relationship between them.
For the study of NER datasets (Sutton and McCal-
lum, 2010), named-entity labels are dependent on
their adjacent observation, so the simplest form of
CRF, called the linear CRF, is used.

4.2 BERT

Bidirectional encoder representation from trans-
formers (BERT), proposed by Devlin et al. (2019),
is a powerful, well-known, and revolutionary
model in the field of NLP. The first step of BERT
is pre-training, where the model is trained on an
unlabeled, unstructured large dataset to understand
the bidirectional context, resulting in pre-trained
language models. This pre-training step is self-
supervised and can be completed without labeled
data leveraging the masked language modeling and
next sentence prediction training objectives. Our
study uses ’bert-based-cased’ pre-trained model for
training the models on the selected datasets. The
second step is fine-tuning, where the model is fur-
ther trained using an additional output layer. This
training uses labeled data of specific domains or
genres to learn the parameters of the new layer and
update the pre-trained parameters. For the specific
case of NER, each token in a sentence has a classi-
fication head responsible for identifying the labels
under the IOB scheme (Ehrmann et al., 2021).

4.3 BiLSTM + Flair Embeddings

Flair is an NLP library based on the PyTorch frame-
work, which supports multiple tasks, such as named
entity recognition, part-of-speech tagging, and text
classification (Akbik et al., 2019). Flair introduces
its own character-based embedding technique and
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provides support for various other embedding mod-
els. In this study, the Flair model uses the combina-
tion of Flair embeddings (Akbik et al., 2018) with
classic word embeddings, e.g. GloVe (Pennington
et al., 2014) for the CoNLL 2003 dataset, fastText
(Bojanowski et al., 2017) for the OntoNotes v5
dataset, and GloVe(twitter) and fastText for the
WNUT 16 dataset. Embeddings are created using
the unified interface of the Flair library. This uni-
fied interface allows the implementation of various
embeddings using the same code. The sequence
labeling model of the Flair library is trained for
NER using BiLSTMs to capture the information
from both directions.

Each of the three models employs a different
architecture to capture token and context meaning
or any intricate information in the data. This di-
verse selection of models in this study is used to see
which architecture is more resilient to the selected
errors.

5 Datasets

Three well-known NER datasets are chosen for this
experiment based on two criteria: the number of
words with various class labels and the amount
of noise in the dataset. The goal is to evaluate
the models on small, moderate, and large datasets.
All datasets contain information from different do-
mains, and the noise level varies. Three text files
containing the train, test, and validation sets are
created for each dataset, following the IOB scheme.
To have an idea of the amount of noise already
present in the datasets, we measure existing mis-
spellings using a spellchecker library.1

5.1 WNUT 16 Dataset

The first dataset selected for this research is the
WNUT 16 dataset (Strauss et al., 2016). This
dataset was created to analyze the challenges posed
by the enormous amount of data generated on so-
cial media platforms, such as Twitter, which usually
have user-generated noisy content. The WNUT 162

is a small-scale dataset as compared to the other
two datasets considered for this study and consists
of manually annotated tweets specially annotated
to serve as a training ground for the NER systems.
Out of the total words in the training and test set,
3, 613 (7.78%) and 7, 274 (11.75%) respectively
are misspellings according to the spellchecker.

1https://pypi.org/project/pyspellchecker/
2https://github.com/jinpeng01/hgn

5.2 CoNLL 2003 Dataset

The second NER dataset selected for this study is
the English CoNLL-2003 dataset (Tjong Kim Sang
and De Meulder, 2003). The words in this dataset
were annotated for four named entity types: person,
location, organization, and miscellaneous. The En-
glish dataset was downloaded from the huggingface
open source platform3. Out of the total words in
the training and test set, 7, 785 (3.82%) and 2, 584
(5.56%) respectively are misspellings.

5.3 OntoNote v5 Dataset

The third dataset selected for this study is the
OntoNotes v5 English dataset, the latest release in
the OntoNotes (Pradhan et al., 2013) dataset series4.
The dataset files were downloaded from the hug-
gingface open source platform 5. OntoNotes is a
large-scale dataset, and along with classic NER en-
tity types, it contains a large corpus of annotations.
Out of the total words in the training and test set,
19, 615 (0.89%) and 2, 822 (0.12%) respectively
are misspellings.

6 Experimental Setup

The most important task in this study is to create
many different versions of train and test datasets
with varying error types and rates. The subsections
will briefly introduce the data augmentation steps,
training process, and evaluation metrics selected
for this study.

6.1 Dataset Modifications with Various Noise
Types

The three datasets contain three files: train, validate,
and test. The various noise types and their com-
binations are introduced in the train and test sets
keeping the validation set untouched for all datasets
in this study. For the WNUT 16 and CoNLL 2003
datasets, five datasets were generated from each
train and test set for spelling, typos, OCR, and
combination of all error types to conduct a thor-
ough analysis. The error types are introduced using
the NLPAug library.6

The number of word manipulations in a dataset
varies for each error type. We decided, based on
two separate studies, the minimum threshold for

3https://huggingface.co/datasets/conll2003
4https://doi.org/10.35111/xmhb-2b84
5https://huggingface.co/datasets/conll2012_

ontonotesv5
6https://github.com/makcedward/nlpaug
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Figure 1: WNUT 16 dataset results with CRF, BERT, and Flair with various error rates for Spelling, Typo, OCR,
and Combination of errors in train set
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Figure 2: WNUT 16 dataset results with CRF, BERT, and Flair with various error rates for Spelling, Typo, OCR,
and Combination of errors in test set

spelling (Flor et al., 2015) and typos (Rodríguez-
Rubio and Fernández-Quesada, 2020) errors. The
maximum threshold for OCR was taken from the
study of Tong and Evans (2002), and errors are
introduced in descending order from a higher to a
lower number. The process of creating modified
datasets with spelling, typo, and OCR errors is as
follows:

• Five datasets are created for spelling errors
with an increasing error rate of 3%, 5%, 10%,
15%, and 20%.

• Similar to spelling errors, five new datasets
are generated for typos with the increasing
error rate of 5%, 10%, 15%, 20%, and 25%.

• For OCR error, five datasets are created with
an error rate of 5%, 10%, 15%, 20%, and

23%.

For the OntoNotes v5 dataset, we use only the
lowest and highest error rates for each error type.
As the model training using OntoNotes requires
a much longer training time than the other two
datasets, only two error rates are evaluated.

We follow a different process for SSE errors than
the other error types. We divide the dataset into
chunks of 450 words.7 Then, we use a uniform
distribution of 1 to 10 to remove words from the
end of this chunk, thus creating a new dataset that
simulates sentence shortening at the end of physical
pages.

For the combination of errors, first, the SSE error
7On average, an A4 page contains 400 to 500 words, as-

suming it has a default margin, 12-point font size, and 1.5 line
spacing. So, an average of 450 words per page is assumed for
SSE errors.
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Figure 3: CoNLL 2003 dataset results with CRF, BERT, and Flair with various error rates for Spelling, Typo, OCR,
and Combination of errors in train set
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Figure 4: CoNLL 2003 dataset results with CRF, BERT, and Flair with various error rates for Spelling, Typo, OCR,
and Combination of errors in test set

procedure is applied to the dataset, and then various
combinations8 of error rates are introduced to this
dataset.

The process is repeated for two more seed val-
ues on the training set of each dataset, creating 15
modified training sets for each spelling, typo, OCR,
and combination of errors and 3 datasets with SSE.
Similarly, the test set of each dataset is infiltrated
with various noise types but with only one seed
value.

8Apply SSE then create five new datasets, A: 3% spelling
error, 5% typos, and 5% OCR errors, B: 5% spelling error,
10% typos and 10% OCR errors, C: 10% spelling error, 15%
typos and 15% OCR errors, D: 15% spelling error, 20% typos
and 20% OCR errors, and E: 20% spelling error, 25% typos,
and 23% OCR errors

6.2 Training Process

At first, each model is trained using the original
train and validation sets. Then, for analyzing the
impact of various noise types, the process is divided
into two parts:

1. Training the model with altered training
datasets: The model with the same configura-
tion as the original dataset is trained with the
modified train datasets. We make predictions
on the unaltered test dataset to compare the
model’s performance with the original dataset.

2. Testing the original model with noisy test
datasets: The model trained on the original
dataset is used for predictions on noisy train
datasets to analyze the effectiveness of models
trained on less noisy data to predict noisy text.
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Figure 5: OntoNotes v5 dataset results with CRF, BERT, and Flair with various error rates for Spelling, Typo, OCR,
and Combination of errors in train set
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Figure 6: OntoNotes v5 dataset results with CRF, BERT, and Flair with various error rates for Spelling, Typo, OCR,
and Combination of errors in test set

6.3 Evaluation Metrics

The results of all three models are presented using
the micro-averaged F1 score, and for any further
investigation, individual F1 scores with precision
and recall for each class label are analyzed. We
report the average over the different seeds.

7 Results

Two sets of experiments are performed for each
model with a dataset, as mentioned in subsection
6.2. The results for each dataset are shown in
two diagrams containing four subplots for spelling,
typo, OCR, and combinations of all errors. The two
figures for each dataset show the results with vari-
ous error rates in the training and testing dataset. In
plots, the numeric value 0 and the term “Orig.” are
used for a dataset without any added noise types.

The term F1 score in all diagrams and table shows
the micro F1 score obtained from all the experi-
ments. The result of SSE for each dataset is shown
in Table 1. The F1 score obtained after all exper-
iments indicates that the SSE does not have any
significant impact on the performance of the se-
lected models.

7.1 WNUT 16 Dataset

Of all the models’ performances on the WNUT
16 dataset, the BiLSTM combined with Flair em-
beddings has shown the best result on the original
dataset, and models trained on a noisy training set.
Figure 1 shows a constant decline in the perfor-
mance of both the BERT and CRF models, and the
most decline in performance is observed with the
combinations of various error types (0.02 for Flair,
0.09 for BERT, and 0.05 for CRF).
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SSE

Datasets Model Original Train Test

CoNLL 2003 CRF 0.8050 0.8041 0.8030
BERT 0.9167 0.9146 0.9152
Flair 0.9246 0.9252 0.9233

WNUT 16 CRF 0.2617 0.2626 0.2612
BERT 0.4586 0.4534 0.4563
Flair 0.5405 0.5384 0.5391

OntoNotes v5 CRF 0.7770 0.7630 0.7761
BERT 0.8586 0.8578 0.8544
Flair 0.8504 0.8450 0.8492

Table 1: The Table shows the F1 score obtained from all three models on each dataset for SSE. The train column
contains the F1 score when SSE was introduced in the training set and the F1 score is obtained on the original test
set. The test column contains the F1 score when the model trained on the original dataset is tested on a test set
containing SSE errors.

Figure 2 shows that the model with the original
WNUT dataset, when used on noisy test datasets
with an increasing error rate, suffers a steep decline
in prediction capability. For the combination of
errors, BiLSTM combined with Flair embeddings
F1 score decreased by 0.26, BERT by 0.26, and
CRF by 0.09). The BiLSTM combined with Flair
embeddings, which was very robust with errors in
the training dataset, did not perform well on noisy
test data.

7.2 CoNLL 2003 Dataset

Figure 3 shows the overall performance of each
model on the CoNLL 2003 training datasets. The
BiLSTM combined with Flair embeddings per-
formed the best on the original dataset, but the
CRF model is most robust towards individual er-
rors. Its performance declines with a combination
of errors. Out of all models, BERT’s performance
is affected by all error types, and the most decline
in its performance is observed with the combina-
tion of errors where the F1 score has dropped from
0.9167 to 0.8924. Figure 4 shows the performance
of the CoNLL 2003 model trained with the original
dataset and tested on the noisy test dataset. The
performance of CRF on noisy test datasets shows
continuous declining performance.

7.3 OntoNotes v5 Dataset

Figure 5 shows the results of models trained on
a noisy training set of the OntoNotes v5 dataset.
The results of BiLSTM combined with Flair em-
beddings show robustness to individual errors, but

performance suffers when multiple error types are
combined. The performance of the BERT and CRF
models does not degrade significantly.

The performance of models trained on the orig-
inal OntoNotes v5 dataset declines continuously,
similar to the results of the WNUT 16 and CoNLL
2003 on the test dataset. Figure 6 shows that the
BiLSTMs with the Flair embeddings performance
is the most affected by all individual and combina-
tion errors out of all models. The model’s F1 score
has come down from 0.8504 to 0.2302 with typo
errors in the test dataset.

The observations with respect to the research
questions stated in the introduction are as follows:

RQ1: What impact does data quality have on
the performance of each NER model?
The quality of a dataset has a different impact on
different architectures. The BiLSTM combined
with Flair embeddings shows more resilience and
the best F1 score on both the original and varia-
tions of the training dataset for the WNUT 16 and
CoNLL 2003 datasets. With the variations of all
noise types in the test set, all models show a steep
decline in performance.

RQ2: How do different types of individual
noises affect NER model performance?

Individual error analysis reveals that all models
are more resistant to spelling errors than typos or
OCR errors. Furthermore, for the NER task, remov-
ing a small percentage of data for SSE has little
effect on model performance.

RQ3:What effect does combining different
types of noise have on the performance of an
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NER model?
A combination of all errors, even with a small

percentage of each noise type, has always resulted
in decreased performance for all models on all
datasets.

RQ4: What effect do different datasets with
different noise types have on the performance of
an NER model?

On the high-quality CoNLL 2003 dataset, the
performance of each model with increased noise is
not affected as much as the addition of noise to the
already noisy WNUT 16 datasets.

8 Conclusion

This paper investigated the effect of different types
of textual noise on NER models by artificially
adding noise to training and testing datasets at dif-
ferent rates. Our goal was to experiment with dif-
ferent levels of noise based on real-world, observed
levels for each category. The results showed that
each error has a different impact on the NER mod-
els, with the OCR and combination of all errors
having the most significant impact. The influence
of errors in the test dataset is severe compared to
that in the training set, and in a few cases, the high
error rate shows the models’ inability to make use-
ful predictions.
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