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Abstract

Models for detecting toxic content play an
important role in keeping people safe online.
There has been much progress in detecting
overt toxicity. Covert toxicity, however, re-
mains a challenge because its detection requires
an understanding of implicit meaning and sub-
tle connotations. In this paper, we explore the
potential of leveraging references, such as ex-
ternal knowledge and textual interpretations, to
enhance the detection of covert toxicity. We
run experiments on two covert toxicity datasets
with two types of references: 1) information
retrieved from a search API, and 2) interpreta-
tions generated by large language models. We
find that both types of references improve de-
tection, with the latter being more useful than
the former. We also find that generating in-
terpretations grounded on properties of covert
toxicity, such as humor and irony, lead to the
largest improvements1.

1 Introduction

The proliferation of toxic speech on social media
platforms has raised significant societal concerns.
Previous attempts to detect such content have
largely focused on overt expressions (Waseem and
Hovy, 2016; Davidson et al., 2017; Founta et al.,
2018; Basile et al., 2019), and often rely on appar-
ent associations, such as explicit language, over-
looking contextual nuances (Röttger et al., 2021;
Hartvigsen et al., 2022; Lee et al., 2022). In reality,
however, toxicity is often more latent than appar-
ent. This underscores the importance of identifying
these concealed forms of toxicity, i.e. covert toxic-
ity, which includes implicit expressions that convey
prejudiced views towards specific groups (Breit-
feller et al., 2019; Han and Tsvetkov, 2020) and
masked forms that utilize coded language and emo-
jis (Taylor et al., 2017; Lees et al., 2021). Therefore,

1https://github.com/softly-ai/RefBasedToxicityDetector
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Figure 1: Covertly toxic statements are not immediately
apparent and may be challenging for existing toxicity
classifiers. Relevant references, such as retrieved docu-
ments or generated interpretations, can aid detection.

detecting covert toxicity requires deciphering con-
notations and contextual cues, posing a significant
challenge to existing toxicity classifiers (Ocampo
et al., 2023).

Recent studies have demonstrated that complex
and multi-layered tasks, such as fact checking and
question answering, can be enhanced by an in-
termediary stage of relevant document retrieval
(Karpukhin et al., 2020; Lewis et al., 2020; Izac-
ard and Grave, 2021; Singh et al., 2021; Liu et al.,
2023; Gao et al., 2023; Li et al., 2023) or generating
reasoning steps (Zhou et al., 2022; Wei et al., 2022;
Kojima et al., 2022; Wang et al., 2023a). We fo-
cus on identifying covert toxicity, and, in a similar
vein, we propose that augmenting models with an
intermediate step of identifying references would
enhance their performance in detecting covert tox-
icity. To illustrate, consider the example in Fig-
ure 1, where the input text (“Don’t worry, that fake
fearless girl statue funded by wall street bankers
will stay up”) is not overtly toxic, which makes
it challenging to detect. However, we can pro-
vide additional contextual cues by utilizing two
types of references: (1) Web-retrieved external
knowledge can provide contextual cues linking
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the “fearless girl statue” to feminism, albeit not
overtly. The model could recognize the associa-
tion between the statue and feminism, yet results
from gpt-3.5-turbo remain inconclusive, indicat-
ing ambiguity. (2) Large language model (LLM)
- generated interpretation can reveal underlying
connotations when prompted (“Extract all the im-
plied meaning behind the text.”). By integrating
such interpretations into the model, it can better
comprehend the contextual implications embedded
within a text, thereby facilitating a more accurate
prediction.

In this work, we explore the efficacy of refer-
ences for covert toxicity detection and examine
the capability of LLMs to generate references that
are as effective as the documents they can gen-
erate for tasks demanding comprehensive knowl-
edge (Yu et al., 2023). We compare search results
from the web with interpretations obtained from
simple prompts for LLMs to uncover hidden mean-
ings in the given text, in terms of their ability to
aid toxicity detection. We show that interpretations
generated from our pipeline with LLMs are the
most effective, and that the effectiveness of these
interpretations can be further improved by ground-
ing their prompts to ask about specific properties
of covert toxicity (Ocampo et al., 2023).

In summary, we show that (1) web-retrieved ex-
ternal knowledge and LLM-generated interpreta-
tions help models make more accurate predictions
on covert toxicity; (2) LLM-generated interpreta-
tions related to granular properties of covert toxic-
ity are the most effective references.

2 Core Concepts

2.1 Covert Toxicity

Covert toxicity encompasses various forms of hid-
den toxicity that may not be immediately appar-
ent (Lees et al., 2021). It includes implicit and
subtle toxic speech, which does not overtly ex-
press abusive or hateful intent. Instead, it relies on
unique nuances that mask the true meaning beneath
the surface (ElSherief et al., 2021). Covert toxic-
ity conveys messages that are delicate or elusive,
making them challenging to analyze or describe.
It often relies on indirect methods like complex
sentence structures or emojis to convey its mean-
ing (Ocampo et al., 2023).

Detecting covert toxicity presents two main chal-
lenges. The first is understanding hidden toxicity in
language that deliberately avoids explicit profanity

and insults. In such cases, people may attempt to
conceal their toxicity through obfuscation tactics
such as misspellings, code words, implied refer-
ences, or utilize visual signs such as emojis and
ASCII art) or subtle harmful expressions like irony,
sarcasm, and microaggressions. To improve detec-
tion in these cases, it is crucial to comprehend the
underlying meaning behind the words used. The
second is the risk of misclassifying positive state-
ments as toxic due to spurious correlations, such
as identity-specific terms, without considering the
context. To avoid such errors, the detector needs to
adeptly understand the contextual cues surrounding
specific terms.

2.2 References

This paper proposes to employing helpful refer-
ences to improve covert toxicity detection. We pro-
pose two distinct types of references with regard to
the input text q. (1) Non-parametric references
refer to web-retrieved external knowledge that can
be obtained from an external corpus or the web
relating to q. Retrieval of this information typically
involves identifying the most semantically similar
document D to q; (2) Parametric references refer
to LLM-generated interpretation that can be gen-
erated from instruction-following LLM M. Given
query q, M is prompted to produce an intermediate
output, denoted as Gi ∼ PM(Gi | i, q), where i is a
specific instruction. Based on different i, intermedi-
ate output Gi can contain different information. We
use the properties that are frequently observed in
covert toxicity according to (Ocampo et al., 2023),
such as black humor, irony, and rhetorical ques-
tions, and experiment with various combinations
of the generated references. We share the specific
wording for each prompts in Appendix Table 5.

3 Experiments

3.1 Datasets

In order to demonstrate the efficacy of our frame-
work in detecting different forms of covert toxi-
city, we evaluate on two distinct covert toxicity
detection datasets. (1) Latent Hatred (ElSherief
et al., 2021) is a binary classification task that in-
volves identifying whether a given text contains
implicit hate; (2) Hatemoji (Kirk et al., 2022) is a
binary classification tasks that involves determin-
ing whether the short-form synthesized statement
contains emoji-based hate speech. Dataset details
are discussed in Appendix A.1.
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Prompt Strategy Latent Hatred Hatemoji

Binary F1 Binary F1

Direct 0.593 0.873
Chain-of-Thought 0.572 0.845

Reference 0.615 0.875

Table 1: LLM-based zero-shot performance compari-
son. The best model for each dataset is shown in bold.
‘Implication‘ property of reference has been used.

3.2 Baselines & Implementation Details
Zero-shot Evaluation using LLMs. In our eval-
uation, we contrast our methodology with the fol-
lowing techniques: (1) Direct simply requests the
prompt to produce the outcome; (2) CoT uses
chain-of-thought prompts (Kojima et al., 2022; Wei
et al., 2022) to generate both an explanation and
its corresponding response; (3) Reference is our
main approach that leverages references to produce
the outcome. We have five different properties of
reference which are implication, sentiment, irony,
humor and rhetorical question. The reference prop-
erty used for Table 1 and Table 2 is implication,
where all implied meanings of the target are gen-
erated. We share our prompts and implementation
details in Appendix A.2.1.

Supervised Training. We present two baselines
for supervised training: (1) Text learns the direct
mapping between the target text and its correspond-
ing label; while (2) Text + Reference trains a
model to map the concatenation of target text and
its corresponding reference to its respective label.
Implementation details are in Appendix A.2.2.

4 Experimental Results

4.1 Performance Comparison
Zero-shot Inference. Table 1 indicates that the
reference-based approach is highly effective in im-
proving the zero-shot performance of LLM. On
the other hand, the use of a chain-of-thought style
approach for tasks with implied meaning is found
to be counterproductive, as it leads to a decrease
in performance. This finding is in contrast to the
effectiveness of this approach for tasks that require
complex reasoning, such as math or logical rea-
soning tasks (Wei et al., 2022). Notably, the per-
formance difference between the reference-based
and non-reference-based approaches is significant
for implicit toxicity, while it is relatively small for
Hatemoji, where the input text mostly consists of
explicit toxic content, although it may be hidden

Model Input Latent Hatred

Binary F1

BERT-base Text 0.683
RoBERTa-large Text 0.733

BERT-base Text + Reference 0.709
RoBERTa-large Text + Reference 0.742

Table 2: Supervised training performance compari-
son. The best model for Latent Hatred is shown in bold.
‘Implication‘ property of reference has been used.

within emojis. It is important to highlight that the p-
value is approximately .000, indicating a significant
result (See Appendix A.2.1 for more details).

Supervised Training. The results presented in
Table 2 demonstrate that the model trained on both
the target text and the reference exhibits superior
performance compared to those trained solely on
the target text, with a notable 1.2 - 3.6% increase in
binary F1. The evidence suggests that incorporat-
ing supplementary information into the fine-tuning
process leads to an enhancement in performance.

4.2 Impact of Reference Type

In order to comprehensively evaluate the impact of
reference types on performance, we compare the
set of references described in Section 2.

Non-parametric vs. Parametric References.
To start, we compare the use of non-parametric and
parametric references. For the non-parametric ref-
erence, we initiate a request to the Google Search
API using the input text q directly as a search query.
We gather the top five search results and concate-
nate their descriptions to generate a passage via
LangChain (Chase, 2022). The resulting passage is
then utilized as a reference. For the parametric ref-
erence, we use implication which is used in Table 1
and 2. Figure 2 indicates a noticeable improvement
in performance when using both parametric and
non-parametric references. However, it is worth
noting that the use of parametric reference outper-
forms non-parametric reference by a significant
margin of 2.1%.

Variations of Parametric References. To fur-
ther investigate what other parametric references
can be generated to help model prediction, we em-
ploy few properties (i.e., implication, sentiment,
irony, humor, rhetorical question) of implicit hate
speech (Ocampo et al., 2023). Prompts for gen-
erating reference for each property are in Table 6.
Figure 2 shows the varying effectiveness of the
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Figure 2: LLM-based zero-shot performance comparison with different reference variants on Latent Hatred. +all
refers to the concatenation of all the references (i.e., implication, humor, irony, rhetoric, sentiment).

type of generated references we use. Results in-
dicate that interpretations with prompts that ask
about granular properties of covert toxicity (e.g.,
humor, irony) are the most effective references. We
could not reveal any specific performance improve-
ment patterns, but one interesting finding pertains
to the sentiment reference. Sentiment is usually
expressed as positive or negative while there is no
strong positive correlation between negative sen-
timent and implicit hate, which may contribute to
the poor performance observed in this aspect.

4.3 Generated Interpretations vs
Human-written Implications

We proxy the quality of our generated interpreta-
tions by comparing them with the human-written
implications in the Latent Hatred dataset. Since the
human-annotated implications are only provided
for a subset of those that are labeled as containing
implicit hate, we compute accuracy only for these
samples in the zero-shot setting. For the model
interpretations, we use ‘implication’ property of
the reference. On the surface, Table 3 indicates that
human implications are better predictors of con-
vert toxicity than model interpretations. However,
the former were written by annotators who knew
the label of the instance that they were annotating,
possibly introducing label leakage. Indeed, even
if we only keep the human implications, accuracy
remains the same. On the other hand, model inter-
pretations are generated without knowing the label,
and therefore are not biased towards generating an
interpretation that hints at the ground truth. This is
supported by the larger drop in accuracy when we
use only model interpretations as the input.

5 Related Work

Beyond Explicit Toxicity. Focusing solely on
identifying explicit harmful text content may not of-
fer a comprehensive understanding of the nuanced
intentions and societal implications associated with
toxic language usage (Jurgens et al., 2019; Rossini,

Approach Latent Hatred

Accuracy

Target + Human implications 0.98
Human implications only 0.98 (−0.0)

Target + Model interpretations 0.88
Model interpretations only 0.78 (−0.10)

Table 3: LLM-based zero-shot performance with hu-
man implications vs model interpretations for the subset
of Latent Hatred that is labeled as implicit hate.

2022). Recent analyses have adopted fine-grained
criteria, including implication (Taylor et al., 2017;
Breitfeller et al., 2019; Han and Tsvetkov, 2020;
Lees et al., 2021; ElSherief et al., 2021), context
sensitivity (Pavlopoulos et al., 2020; Xenos et al.,
2021; Gong et al., 2021; Menini et al., 2021; Moon
et al., 2023), and subjectivity (Sap et al., 2022;
Rottger et al., 2022), to gain a holistic understand-
ing of toxicity beyond explicit signs.

Enhancing Models with LLM Output. Recent
research has emphasized the use of LLMs to pro-
duce contextual information, such as explanations
or knowledge, for addressing specific queries. This
approach involves generating intermediate reason-
ing stages or rationale-like explanations to tackle
complex tasks (Wei et al., 2022; Kojima et al.,
2022; Anil et al., 2022; Dohan et al., 2022; Wang
et al., 2023b; Saparov and He, 2023). Furthermore,
LLMs are employed to generate relevant knowl-
edge for solving tasks that involve commonsense
reasoning (Liu et al., 2022; Fang et al., 2022) or
tasks that require knowledge (Yu et al., 2023).

6 Conclusion

In this paper, we propose a reference-guided covert
toxicity detection framework. The framework com-
prises non-parametric and parametric references
that can be obtained from external sources and large
language models, respectively. Our study demon-
strates that incorporating additional references im-
proves the model’s ability to identify covert toxicity,
resulting in more accurate detection performance.
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7 Limitations

The covert toxicity datasets (e.g., Latent Hatred,
Covert Toxicity) exhibit significant subjectivity. In
a non-trivial number of cases that we manually
examined, the discrepancies between LLM-based
predictions and ground truth labels presented a chal-
lenge for the authors on whether the predictions
or the given labels were correct. Therefore, an im-
portant future work will be to account for these
cases to more accurately capture the performance
of coverty toxicity detection.

(Huang et al., 2023) also mentions that indi-
viduals tend to exhibit a preference towards Chat-
GPT inferences in cases where there are disagree-
ments between ChatGPT and human labels. Con-
sequently, this may be the reason why zero-shot
LLM inference demonstrates lower performance
than supervised fine-tuning, despite various papers
showing that modern instruction-following models
can achieve similar results to supervised fine-tuning
in a zero-shot setting. Despite such variances, our
methodology consistently yields superior results
compared to other approaches.
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A Appendix

A.1 Dataset Details
Dataset statistics and its corresponding evaluation
metrics are presented in Table 4. It is important
to note that the label distribution for Latent Ha-
tred (ElSherief et al., 2021) is 34% positive and
66% negative. The maximum random accuracy for
this distribution would be approximately 66, while
the maximum random binary F1 score would be
around 50.75.

A.2 Implementation Details
A.2.1 Zero-shot LLM Inference
In this experiments, we use gpt-3.5-turbo lan-
guage model, as of June 2023, with specific set-
tings of temperature set to 0 and topp set to 1,
which enables us to produce deterministic output
for all the baselines. Prompts used for this evalua-
tion are in Table 6. Despite instructing the model
to solely consider responses with ’yes’ and ’no’,
it sometimes generates unclear responses in com-
plex cases due to the internal parametric policy that
is trained with human preferences (Ouyang et al.,
2022). In order to address such scenarios, we opt
to only consider responses featuring ’yes’ as a pos-
itive prediction, assuming it carries significant con-
fidence in its prediction. For the evaluation metrics,
we consider binary F1 as shown in Table 4. The
implementation of our two-step approach incurs
a higher cost compared to the one-step prediction
method that doesn’t utilize reference. However,
this increased cost is relatively insignificant as it
amounts to less than $20 for all our experiments.

A.2.2 Supervised Training
We use BERT-base (Devlin et al., 2019) and
RoBERTa-large (Liu et al., 2019) for the exper-
iments. When conducting fine-tuning experiments,
we implement the Adam optimizer with a maxi-
mum sequence length of 256. In each experiment,
we conduct a search for the optimal learning rate
amongst [2e-5, 1e-5, 5e-6, 3e-6], and batch size
amongst [4, 8, 16]. Full data statistics are presented
in Table 4.

A.3 Prompts used in the paper
We present prompts used in prediction for zero-shot
inference (Table 5) and generating interpretation
(Table 6).
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Dataset # Train # Dev # Test Metric

Latent Hatred (ElSherief et al., 2021) 12,234 4,078 4,079 Binary F1
Hatemoji (Kirk et al., 2022) - - 3,930 Binary F1

Table 4: Datasets used in the paper. Report train and development only for Latent Hatred which we show supervised
fine-tuning results.

Method Instruction

Direct
Given Post: ‘{text}’
Answer yes or no for whether the post may contain implicit hate.

Chain-of-Thought
Given Post: ‘{text}’
Answer yes or no for whether the post may contain implicit hate.
Let’s think step by step.

Reference

Given Post: ‘{text}’
Passage: ‘{passage}’
Refer to the passage above,
Answer yes or no for whether the post may contain implicit hate.

Table 5: Prompts used for prediction

Reference Instruction

Implication
Given Post: ‘{text}’
Extract all the implied meaning of a post.

Sentiment
Given Post: ‘{text}’
Identify the sentiment of a post.

Irony
Given Post: ‘{text}’
Identify whether there is irony or sarcasm with yes/no and if there is, explain it.

Humor
Given Post: ‘{text}’
Identify if it contains black humor and if so explain it.

Rhetoric
Given Post: ‘{text}’
Identify if it contains a rhetorical question and if so explain why it is one.

Table 6: Prompts used for parametric reference generation
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