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1 Research interests

My research interests lie in the area of modelling affec-
tive behaviours of interlocutors in conversations. In
particular, I look at emotion perception, expression, and
management in information-retrieval task-oriented dia-
logue (ToD) systems. Traditionally, ToD systems focus
primarily on fulfilling the user’s goal by requesting and
providing appropriate information. Yet, in real life, the
user’s emotional experience also contributes to the overall
satisfaction. This requires the system’s ability to recog-
nise, manage, and express emotions. To this end, I in-
corporated emotion in the entire ToD system pipeline
(Feng et al., 2024). In addition, in the era of large lan-
guage models (LLMs), emotion recognition and genera-
tion have been made easy even under a zero-shot set-up
(Feng et al., 2023b; Stricker and Paroubek, 2024). There-
fore, I am also interested in building ToD systems with
LLMs and examining various types of affect in other ToD
set-ups such as depression detection in clinical consulta-
tions and user confidence estimation in tutoring systems
(Litman et al., 2009).

1.1 Emotion-aware ToD System

While existing works have explored user emotions or
similar concepts in various ToD modelling tasks (Lukin
et al., 2017; Guo et al., 2024), none has so far combined
these emotional aspects into a fully-fledged dialogue sys-
tem nor conducted interaction with human or simulated
users. Therefore, I propose to incorporate emotion into
the complete ToD interaction process, involving under-
standing, management, and generation.

To achieve this, I first extended the EmoWOZ dataset
(Feng et al., 2022) with system emotion labels. With this
ToD dataset containing both user and system emotion la-
bels, I could train a both emotionally and semantically
conditioned natural language generator, as well as an
emotional user simulator (Lin et al., 2023) that both reacts
to system emotion and expresses user emotions. Leverag-
ing off-the-shelf dialogue state tracker (van Niekerk et al.,
2021) and user emotion recogniser (Feng et al., 2023a),
I set up the system around a dialogue policy (Geishauser
et al., 2022), which takes dialogue state extended with

user emotion as input and outputs action including sys-
tem emotions. The policy was optimised via reinforce-
ment learning (RL) with the emotional user simulator on
the language level. For the reward signal, the policy con-
sidered both task success and user sentiment level.

In addition to the above-mentioned modular ToD sys-
tem, I also took the inspiration from an existing LLM-
based end-to-end system (Stricker and Paroubek, 2024).
I extended the system to output emotional actions and
trained it with the newly collected dataset.

With both systems, I conducted corpus-level evalua-
tion and interactive evaluation with both simulated and
real users. Our results show that incorporating emotion
into the full ToD pipeline can effectively enhance the
user’s emotional experience and task success at the same
time. This aligns with our hypothesis and intuition that
emotion is crucial in ToD systems. I believe this points to
a promising direction on improving ToD systems.

The future work would be to combine the advantages
of modular systems and end-to-end systems, specifically
by incorporating RL with human feedback (RLHF) to
LLM-based end-to-end systems. Modular systems are
usually centred around a dialogue policy optimised via
RL for long-term task success. Yet, they are prone to er-
rors from each small modules. End-to-end models, on
the other hand, can leverage the capacity of large pre-
trained models but existing models are trained on the cor-
pus with supervised learning. This usually leads to sub-
optimal performance in interactive evaluation. Incorpo-
rating RLHF in the training could potentially be a solu-
tion and further boost the performance of end-to-end ToD
systems. Efficient acquirement of response preference la-
bels and RL training will be my next research efforts.

1.2 Recognising Affect using LLMs

I am also interested in how LLMs can be used to recog-
nise user affects in conversations. My goal was not
to build state-of-the-art affect recognition models with
LLMs but rather to understand the potential of current
LLMs under vanilla set-ups for such a purpose. Specifi-
cally, I conducted experiments with a set of LLMs on dif-
ferent types of datasets under an array of prompt-based
training set-ups. For datasets, I examined three differ-
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ent types of affects: emotions in ToDs, emotions in chit-
chat, and depression. For training set-ups, I looked at
zero-shot learning, few-shot in-context learning, and su-
pervised learning with different amount of data. I also
considered LLMs as a text-processing back-end in SDS
by investigating how automatic speech recognition errors
could influence model prediction. With experimental re-
sults, I draw insights on LLMs’ zero and few-shot ICL
ability, data efficiency in task-specific fine-tuning, ability
to handle long input sequence, ability to recognise dif-
ferent types of affects, robustness to ASR errors, and so
on.

In the future, I will look at how affect recognition and
generation can be improved under zero or few-shot set-
ups. I will leverage existing resources such as annotator
confusion and annotation schemes to elicit reliable rea-
soning and uncertainty estimation in LLMs.

2 Spoken dialogue system (SDS) research

The emergence of LLMs has great impact on approaches
in spoken dialogue modelling. They also bring about op-
portunities in areas such as unsupervised ontology con-
struction for system design (Vukovic et al., 2024). While
LLMs have demonstrated promising abilities in general
language modelling tasks and chat applications, smaller
models and established modular system set-ups should
not be overlooked. Therefore, instead of wishfully using
LLMs to replace all SDSs, researchers will understand
more about the limitations of LLMs so as to combine the
strengths of LLMs and traditional methods.

There will also be more diverse requirements and eval-
uation criteria for SDSs. In the past, information-retrieval
ToD systems focus primarily on task success and inform
rate, and chit-chat systems focus on engagement, coher-
ence, and naturalness. As we see more about what more
powerful systems can achieve nowadays, we expect more
from the system: safety, trust-worthiness, bias, emotion
consistency, and many more. We may also expect our di-
alogue agents to be able to adapt to different challeng-
ing scenarios, from out-of-domain requests to cultural
shifts. While we see more exciting research opportuni-
ties and directions, challenges such as the evaluation of
more well-rounded SDSs emerge.

3 Suggested topics for discussion

• Controllability of LLMs as Dialogue System
Back-end: The issue of hallucination can be es-
pecially detrimental in the domain of task-oriented
dialogues and in the presence of an ontology and
database. How should we make LLMs more con-
trollable for SDS applications?

• The Future of LLMs: What ability would the next

generation of LLMs have? What would be possible
directions of the development in NLP?

• Affective SDS: What are risks of building SDSs for
affect-related applications, such as emotion support,
mental health counseling, more human-like personal
assistant, etc.?
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