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1 Research interests

In the modern field of Natural Language Processing
(NLP), large language models (LLMs), such as GPT-
4 (OpenAI, 2023), have become the key technologies
that potentially break the traditional boundaries. These
models can generate idiomatic high-quality text, success-
fully addressing many of the NLP challenges and drive
rapid technological advancements. Within the context of
LLMs, my research interests are: (1) utilizing the pow-
erful text generation capabilities of the LLMs in terms of
customized dialogue data augmentation in data-scarce
tasks, and (2) applying the LLMs to the psychological
counseling dialogues. Moreover, I hope to combine
these two themes in the future.

1.1 Customized dialogue data augmentation

Spoken dialogue systems (SDSs) often rely on the inter-
action data between real humans for training. However,
different people have different speaking styles and strate-
gies, influenced by factors such as the dialogue topic, age,
regional and local language variation, context, identity,
preferences, and personality of the speaker, among oth-
ers. In real life human conversations, individuals may
adjust their responses based on the other party’s strategy,
such as seeking clarification when the other party speaks
unclearly. For SDS, those with unique dialogue strategies
form a minority group, resulting in relatively scarce dia-
logue data. Consequently, the SDS cannot adapt to the
speaking strategies of others as effectively as humans,
particularly when encountering individuals with unique
speaking styles.

The scarcity of the annotated data and the challenge
of data imbalance are persistent issues in various artifi-
cial intelligence domains (Shi et al., 2020; Ahmad et al.,
2021; Hedderich et al., 2021). To address those effec-
tively, various data augmentation techniques have been
employed, as demonstrated in prior research on different
tasks (Feng et al., 2021; Bayer et al., 2022; Kim et al.,
2023). For instance, Schick and Schütze (2021) gener-
ated text similarity datasets from scratch by instructing a
large pre-trained language model (PLM). Similarly, Liu
et al. (2022) and Chen and Yang (2021) enhanced the
data by manipulating individual utterances within dia-
logues—in ways such as adding, deleting, changing their

order, or regenerating them—while preserving the orig-
inal meaning, which improved the model’s performance
in the dialogue summarization tasks.

My research focuses on the dialogues that involve
users of different age groups. Inaba et al. (2024a) have
found that speakers of various age group exhibit distinct
speaking strategies. For example, compared to other age
groups, minor interlocutors are less likely to express their
opinions. Consequently, the other speaker often seeks
confirmation or asks additional questions to make the
conversation flowing smoothly. Considering the unique
speaking styles of minors and the inherent difficulties in
obtaining data from them (Aydin et al., 2021), my recent
research employs a framework that combine the LLM and
PLM. This approach customizes the generation of dia-
logue data for minors, enhancing the performance of SDS
in situations when data from minors is scarce.

1.2 Psychological counseling using LLM

Mental health is one of the critical issues in today’s soci-
ety. According to the World Health Organization (WHO),
nearly 1 billion people worldwide suffer from mental dis-
orders, yet 70% of them do not receive any treatment,
such as counseling1. There is a significant gap between
the existing mental health support and the needs of pa-
tients. In recent years, the emergence of online coun-
seling platforms, such as 7cups2 has made psychological
counseling more accessible. However, due to the lack of
experience of some counselors, the effectiveness of these
services is not always ideal. Additionally, training pro-
fessional counselors requires considerable effort.

In recent years, AI research related to psychological
counseling has been increasing. Inaba et al. (2024b) col-
lected counseling dialogue data using role-playing meth-
ods, and the evaluations by professional counselors indi-
cated that the responses generated by GPT-4 were com-
petitive compared to those generated by human coun-
selors. Zhang et al. (2024) enriched the counseling di-
alogue dataset by using LLM to generate dialogues based
on reports from online counseling platforms. Young
et al. (2024) investigated the popularity of human and
LLM-generated responses across various counseling top-

1https://news.un.org/zh/story/2022/06/1104712
2https://www.7cups.com/
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ics. Their results showed that LLM responses were more
popular for topics like interpersonal relationships and
physical health, while human responses were preferred
for topics related to suicide.

Those studies indicate that LLMs can play the role of
counselors, generating high-quality psychological coun-
seling dialogues. However, due to the uncontrollable na-
ture of their generated content, there is a potential risk
when interacting with users who have suicidal tenden-
cies or extreme emotions. Consequently, the aim of re-
lated research is not to have AI act as counselors directly
but to use their powerful text generation capabilities to
assist counselors with dialogues. Sharma et al. (2022)
developed HAILEY using PLM to help peer supporters
on online counseling platforms provide more empathetic
responses. Similarly, Hsu et al. (2023) used PLMs to
offer real-time response strategies and sentences during
counseling dialogues, assisting counselors in their work.
This approach mitigates safety and ethical risks while
also helping inexperienced counselors develop their pro-
fessional skills.

My research interest lies in utilizing LLMs to as-
sist counselors with psychological counseling dialogues.
Specifically, this study employs LLM to provide various
forms of real-time support for the mental health coun-
selors during their sessions with their patients, in terms of
dialogue strategies, example responses, and refinement of
drafted replies. Ultimately, the usefulness of the support
system and the most preferred type of support by coun-
selors will be analyzed through a questionnaire survey.

2 Spoken dialogue system (SDS) research
I believe that future SDSs need to have the ability to
adapt to different individuals. For example, people’s
personalities vary; some enjoy engaging in conversation,
while others are better listeners and appreciate different
aspects of the dialogue. Additionally, some people are
comfortable answering any questions, while others may
be more restrained and prefer not to be asked very per-
sonal questions. The goal is for SDS to infer the users’
personalities through various potential multimodal cues
during conversations and adapt their responses accord-
ingly. This adaptability would significantly enhance the
evaluation of dialogue systems.

I also hope that SDSs will become increasingly ac-
tive in the field of psychological counseling. The num-
ber of people suffering from psychological problems is
enormous, and most of them do not receive adequate sup-
port due to a lack of someone to talk to, among other rea-
sons. This situation needs improvement. The powerful
capabilities of LLMs can provide significant help in psy-
chological counseling.

Ultimately, applying the user adaptability to psy-
chological counseling will enable SDSs to create more

flexible and effective counseling dialogues when inter-
acting with different users.

3 Suggested topics for discussion

I suggest discussing the following topics:

• Multimodal Dialogue Systems for Individuals
with Disabilities: As multimodal dialogue systems
evolve, more information becomes available for di-
alogue generation. Can we leverage these technolo-
gies to facilitate daily life activities for individuals
with disabilities? What are the key technologies
when building such dialogue systems, and what con-
siderations should be made?

• LLM’s Personality Adaptation: Humans typically
exhibit a single personality type, possibly engaging
comfortably in conversations with only a few other
personality types. In contrast, LLMs are trained on
extensive textual data from conversations involving
various personality types. Thus, LLMs can theoreti-
cally adapt to any personality, potentially enhancing
the conversational experience for all of the users by
adopting different conversational styles to match the
user’s personality.

• How long can the trend of LLMs last? What are
the key technologies for future SDS?
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