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Abstract

Large language models (LLMs) have demon-
strated potential in fact-checking claims,
yet their capabilities in verifying claims in
multilingual contexts remain largely under-
studied. This paper investigates the effi-
cacy of various prompting techniques, viz.
Zero-Shot, English Chain-of-Thought, Self-
Consistency, and Cross-Lingual Prompt-
ing, in enhancing the fact-checking and
claim-verification abilities of LLMs for Ara-
bic claims. We utilize 771 Arabic claims
sourced from the X-fact dataset to bench-
mark the performance of four LLMs. To the
best of our knowledge, ours is the first study
to benchmark the inherent Arabic fact-
checking abilities of LLMs stemming from
their knowledge of Arabic facts, using a va-
riety of prompting methods. Our results re-
veal significant variations in accuracy across
different prompting methods. Our findings
suggest that Cross-Lingual Prompting out-
performs other methods, leading to notable
performance gains.

1 Introduction

Large language models (LLMs) have demon-
strated remarkable proficiency in a wide range
of tasks (Minaee et al., 2024). One particu-
lar area where LLMs have shown promising
capabilities is in fact-checking and claim veri-
fication (Choi and Ferrara, 2024; Hoes et al.,
2023; Lee et al., 2020; Zhang and Gao, 2023).
The rise of fake news and misinformation in re-
cent years has been well-documented, making
fact-checking and claim verification essential
to combat the rapid spread of misinformation.

However, previous work on fact-checking and
claim verification using LLMs has primarily fo-
cused on English and Chinese facts and claims,
leaving a significant gap in the exploration of
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multilingual fact-checking (Cao et al., 2023;
Quelle and Bovet, 2024; Zhang et al., 2024).
This paper addresses this gap by focusing on
fact-checking in Arabic, an inherently complex
language due to its rich morphology, diverse
dialects, and significant variation between writ-
ten Modern Standard Arabic and spoken forms,
using LLMs, which remains an under-explored
domain. To this end, we benchmark LLM per-
formance on a filtered dataset of 771 Arabic
claims sampled from the X-fact dataset (Gupta
and Srikumar, 2021a).

We utilize a variety of leading prompting
techniques, including Zero-Shot (as a Base-
line), English Chain-of-Thought (Wei et al.,
2023), Self-Consistency (Wang et al., 2023),
and Cross-Lingual Prompting (Qin et al., 2023),
to evaluate the effectiveness of LLMs in verify-
ing Arabic claims. We present the variations in
the accuracy of LLMs across different prompt-
ing methods. To our knowledge, this is the first
work to evaluate the factual Arabic knowledge
possessed by LLMs and their inherent Arabic
fact-checking abilities based on this knowledge.

The remainder of this paper is organized
as follows: In Section 2, we review related
work. In Section 3, we define the problem of
claim verification as explored in this paper. In
Section 4, we describe the datasets, models,
and evaluation methods used. We discuss our
experiments in Section 5 and present our results
in Section 6. Finally, we conclude in Section 7
and suggest directions for future research.

2 Related Work

Fact-Checking using LLMs With the
rise of widespread misinformation, various
studies have examined the capabilities of
LLMs in fact-checking and claim verification.
LLMs such as GPT-3 and GPT-4 excel in
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Figure 1: Workflow for comparing prompting strategies (Zero-Shot, English Chain-of-Thought (CoT), Self-
Consistency, and Cross-Lingual Prompting (CLP)) used to evaluate the Arabic fact-checking capabilities
of LLMs.

fact-checking when provided with sufficient
contextual information, though they suffer
from inconsistent accuracy (Quelle and Bovet,
2024). Tian et al. 2023 suggests enhancing
LLM factuality by fine-tuning models with
automatically generated factuality preference
rankings, which leads to improved factual
accuracy without the need for human labeling.
Cheung and Lam 2023 incorporates external
evidence-retrieval to bolster fact-checking
performance for the Llama model. Hu et al.
2023 examines the factual knowledge possessed
by LLMs and their fact-checking capabilities
using prompting techniques such as zero-shot,
few-shot, and Chain-of-Thought.

Multilingual Fact-Checking using LLMs
While there have been significant advance-
ments in LLM-based fact-checking in English,
multilingual fact-checking using LLMs remains
relatively under-explored. Shafayat et al. 2024
examines the factual accuracy of LLMs across
nine languages, including Arabic. Cekinel
et al. 2024 explores cross-lingual learning

Figure 2: Examples of Arabic claims, their English
translations, and ground-truth labels (0: false; 1:
true) from the test dataset

and low-resource fine-tuning for fact-checking
in Turkish, and uses in-context learning to
evaluate LLMs’ performance in this task.

Arabic and LLMs NLP in the Arabic lan-
guage has seen significant advancements (Dar-
wish et al., 2021; Guellil et al., 2021) with Large
Language Models (LLMs). Alyafeai et al. 2023
evaluates ChatGPT on a variety of Arabic NLP
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tasks. Pre-trained language models and lan-
guage models fine-tuned on Arabic data have
also demonstrated state-of-the-art performance
in Arabic classification and generative tasks
(Alghamdi et al., 2023; Antoun et al., 2021;
Deen et al., 2023). Despite advancements in
LLMs’ capabilities in Arabic, fact-checking us-
ing LLMs remains under-explored.

Althabiti et al. 2024 present Ta’keed: an
LLM-based system for explainable Arabic fact-
checking, and achieve promising results. In this
work, we benchmark the Arabic fact-checking
abilities of several multilingual LLMs using a
variety of prompting methods.

3 Problem Definition
We treat claim verification as a binary classifica-
tion task. For each claim xi in our test dataset
δ we prompt an LLM l to classify the claim as
either ‘true’ (ŷ = 1) or ‘false’ (ŷ = 0), where
ŷ is the value predicted by l. In the case that
l fails to return a binary value (inconclusive
response) for ŷ, we take ŷ = ¬y.

4 Experimental Setup
4.1 Datasets
We utilize the X-fact dataset (Gupta and Sriku-
mar, 2021a) as the source for the Arabic claims.
The dataset is organized into several splits:
Train, Development (Dev), In-domain Test
(α1), Out-of-domain Test (α2), and Zero-Shot
Test (α3). We filter out those claims whose
ground truth labels differ from either ‘true’ or
‘false’ from the Train, Dev, and In-domain Test
(α1) splits to create a test dataset δ containing
771 claims in Arabic:

δ = {(x1, y1), (x2, y2), ..., (xn, yn)}

where xi is a claim in Arabic and yi ∈ {0, 1} is
its ground truth label.

We note that 730 of the claims in the test
dataset are false, while 41 are true. A sample
from the test dataset is presented in Figure 2.
Appendix A.1 contains further details about
the test dataset.

4.2 Models
We conduct our experiments on Meta AI’s
Llama 3 8B and Llama 3 70B (MetaAI, 2024),
Google DeepMind’s Gemini 1.0 Pro (Anil et al.,

2023), and OpenAI’s GPT-3.5-turbo. 1 For
all models included in the study, we set the
temperature to 0.7. The maximum possible
token length for the outputs was set for each
model given their respective context lengths.

4.3 Evaluation
We calculate an accuracy score for each LLM
tested in each experiment. This accuracy score
s is expressed as a percentage value as follows:

s = nc

n
× 100%

where nc is the number of correct class predic-
tions made by the LLM and n is the size of
the test dataset. As mentioned in Section 3,
inconclusive responses are treated as incorrect
classifications.

5 Experiments

Figure 1 depicts the four prompting techniques
used.

Zero-Shot Prompting We employ zero-shot
prompts to gauge the baseline performance of
the LLMs on the test data. A zero-shot prompt
simply contains an Arabic claim xi from the
test dataset δ and an instruction Z to classify
the claim as either ‘true’ or ‘false’. As such,
the LLM l’s response is:

ŷ = l(xi, Z)

English Chain-of-Thought Chain-of-
Thought (CoT) prompting has been shown
to significantly improve performance across
various tasks (Wei et al., 2023), including
claim verification (Hu et al., 2023). This
method enables models to articulate a clear,
human-like, step-by-step reasoning process
before arriving at a conclusion. Typically, in a
zero-shot CoT prompt, the instruction “Let’s
think step by step” is added to the original
instruction Z to create a new instruction ZCoT.
The response ri of the LLM l to an Arabic
claim xi from the test dataset δ is computed
as follows:

ri = l(xi, ZCoT)

ri = (pi, ŷi)
1https://platform.openai.com/docs/models/

gpt-3-5-turbo

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
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where pi represents the reasoning path followed
by the language model to arrive at the final
answer ŷi.

We explore English Chain-of-Thought (Qin
et al., 2023), i.e. we add the instruction
“Let’s think step-by-step in English” to the
original instruction Z. Since the test data is
in Arabic, we hypothesize that prompting the
model to reason out the answer in English
would increase the likelihood of the LLM
understanding the Arabic claim, thereby
leading to performance gains.

Self-Consistency Wang et al. 2023 shows that
replacing the greedy decoding used in Chain-
of-Thought with ‘self-consistency’ significantly
improves CoT reasoning. Self-consistency in-
volves prompting a language model to generate
a variety of reasoning paths to arrive at an an-
swer and marginalizing these reasoning paths
to choose the most consistent answer as the
final answer.

We add Self-Consistency to Cross-Lingual
CoT. For an Arabic claim x, we prompt the
LLMs to generate three reasoning paths in
English and obtain three responses such that
ri = (pi, ŷi). We choose the most consistent
value of ŷi as the final answer.

Cross-Lingual Prompting Qin et al. 2023
leverage Cross-Lingual Prompting (CLP) to
enhance zero-shot Chain-of-Thought reason-
ing in language models in multilingual set-
tings. They show that CLP outperforms pop-
ular prompting techniques including English
Chain-of-Thought.

CLP involves two steps: (i) Cross-Lingual
Alignment Prompting, where the language
model is prompted to understand the Arabic
claim verification task step-by-step in English,
and (ii) Task-specific Solver Prompting, where
the language model is prompted to solve the
task using CoT reasoning.

6 Results and Analysis

Our findings for each prompting approach are
presented in Table 1. Figure 3 shows the re-
lation between the prompting technique and
model accuracy for each model. The percent-
age increase in accuracy from the baseline for
each prompting method and model is shown

Figure 3: Model Accuracy versus Prompting
Method

in Figure 4. Generally, we find that the model
accuracy increases from zero-shot to Cross-
Lingual CoT to Self-Consistency, and typically
reaches its maximum value in the CLP setting.

Figure 6 shows the relation between the
prompting technique and the number of incon-
clusive answers for each LLM. As shown in the
figure, the number of inconclusive responses, on
average, increases when going from zero-shot to
Cross-Lingual CoT or Self-Consistency. This
number decreases in the CLP setting, in which
the fewest inconclusive responses are returned.

Figure 5 shows a mostly linear relationship
between the prompting technique and the num-
ber of correct answers for each LLM.

6.1 Zero-Shot

Accuracy We find that Llama 3 70B In-
struct achieves an accuracy of 40.21%, and
Llama 3 8B achieves a higher accuracy of
59.01%. GPT-3.5-turbo achieves the second-
best accuracy of 60.94% while Gemini Pro
performs the worst with an accuracy of 30.60%.

Inconclusive Responses The language
models show varying levels of inconclusive
responses, with Llama 3 70B, Llama 3 8B,
and GPT-3.5-turbo recording 23, 11, and 21
inconclusive responses respectively. Interest-
ingly, despite a lower overall accuracy, Gemini
1.0 Pro returns only 5 inconclusive responses,
which could indicate a propensity to deliver
more decisive answers, albeit incorrect.
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Model Correct Incorrect Inconclusive Accuracy % % Increase
Llama 3 8B-instruct
Zero-Shot (Baseline) 455 305 11 59.01 −
English Chain-of-Thought 500 209 38 66.93 13.42
Self-Consistency 529 201 41 68.61 16.27
Cross-Lingual Prompting 664 91 9 86.55 46.67
Llama 3 70B-instruct
Zero-Shot (Baseline) 310 438 23 40.21 −
English Chain-of-Thought 472 265 34 61.22 52.25
Self-Consistency 460 247 64 59.66 48.37
Cross-Lingual Prompting 620 134 17 80.42 100.00
Gemini 1.0 Pro
Zero-Shot (Baseline) 236 531 5 30.60 −
English Chain-of-Thought 383 307 81 49.68 62.35
Self-Consistency 405 322 44 52.53 71.67
Cross-Lingual Prompting 381 385 5 49.41 61.47
GPT-3.5-turbo
Zero-Shot (Baseline) 468 279 21 60.94 −
English Chain-of-Thought 461 244 66 59.79 -1.89
Self-Consistency 491 235 45 63.68 4.50
Cross-Lingual Prompting 603 116 2 78.21 28.34

Table 1: Results for each prompting method and LLM. ‘% Increase’ denotes the percentage increase in
model performance from the baseline (zero-shot).

We observe that in the zero-shot setting, the
LLMs are not effective fact-checkers and have
room for improvement.

6.2 English Chain-of-Thought
Accuracy We observe that the English Chain-
of-Thought (CoT) approach generally improves
accuracy across most models compared to the
zero-shot baseline. Llama 3 70B Instruct’s
accuracy increases by 52.25% (from 40.21%
to 61.22%) in the CoT setting. Llama 3 8B
Instruct’s accuracy increases from 59.01% to
66.93%, a 13.42% increase. Gemini Pro’s
performance rises by 62.35% (49.68% from
30.60%).

In contrast, GPT-3.5-turbo performs with
similar accuracy in the Cross-Lingual CoT
setup, with a 1.89% drop in accuracy from its
zero-shot performance.

Inconclusive Responses Despite the in-
crease in accuracy for most LLMs, there was a
significant rise in inconclusive responses across
all models when applying the Cross-Lingual
CoT method. This was particularly marked
in Gemini Pro and GPT-3.5-turbo where
inconclusive responses shot up to 61, 81, and 66

respectively. We find that while Cross-Lingual
CoT appears to improve accuracy by allowing
the LLMs to reason out the answers in English,
it also seems to introduce greater uncertainty,
leading to a higher number of inconclusive
responses.

We find that generally, while English Chain-
of-Thought leads to a rise in the number of
inconclusive responses, the LLMs mostly return
more correct answers, leading to a net increase
in accuracy.

6.3 Self-Consistency
Accuracy We find that implementing Cross-
Lingual CoT with Self-Consistency enhances
model performance beyond Cross-Lingual CoT.
For Llama 3 8B Instruct and Llama 3 70B
Instruct, the accuracy increases by 16.27% and
48.37%, respectively. Gemini Pro’s accuracy
rises significantly, by 71.67%. GPT-3.5-turbo’s
accuracy increases by 4.50%. Llama 3 70B
Instruct performs worse in the Self-Consistency
setting than in the Cross-Lingual CoT setting.

Inconclusive Responses As shown in
Figure 6, Self-Consistency leads to the highest
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Figure 4: Percentage Increase from the Baseline (Zero-Shot) for each Prompting Method and LLM.

number of inconclusive responses out of all the
prompting methods. Llama 3 70B Instruct
returns the highest number of inconclusive
responses (64). We hypothesize that because
the model is prompted to generate three lines
of reasoning, it is susceptible to hallucinations
and indeterminate chains of thought.

We observe that integrating Self-Consistency
with Cross-Lingual CoT leads to an increase in
the number of inconclusive responses returned
by the LLMs. However, due to a rise in the
number of correct answers, there is a net in-
crease in model accuracy.

6.4 Cross-Lingual Prompting
Accuracy We find that cross-lingual prompt-
ing (CLP) often leads to the best model
performance out of all the four prompting
techniques. Llama 3 8B Instruct’s accuracy im-
proves by 46.67% over the baseline to achieve
an accuracy of 86.55%, the highest among
all tested models and methods. Similarly,
GPT-3.5-turbo’s performance also benefits
from CLP, with its accuracy rising to 78.21%
from a baseline of 60.94%. Llama 3 70B’s
performance reaches 80.42% from its baseline
of 40.21%, a 100% improvement.

Inconclusive Responses Interestingly, while
CLP improved accuracy across the board, it
also led to a reduction in inconclusive responses

for most models, indicating an increase in
decisiveness. We observe a reduction in
inconclusive responses from 11 to 9 for Llama
3 8B, 23 to 17 for Llama 3 70B, and 21 to
2 for GPT-3.5-turbo from zero-shot to CLP.
The number of inconclusive responses remains
unchanged for Gemini Pro.

Our findings suggest that CLP is extremely
effective in clarifying the decision-making pro-
cesses for these LLMs in an Arabic context
while maintaining accuracy.

7 Conclusion and Future Work
In this study, we examined the Arabic fact-
checking and claim verification capabilities of
four LLMs: Llama 3 8B Instruct, Llama 3
70B Instruct, Gemini 1.0 Pro, and GPT-3.5-
turbo. We employed four prompting tech-
niques: Zero-Shot, English Chain-of-Thought,
Self-Consistency, and Cross-Lingual Prompt-
ing. Our findings reveal that although these
LLMs perform inadequately in a zero-shot set-
ting, prompting techniques that engage reason-
ing capabilities significantly enhance their per-
formance. In particular, Cross-Lingual Prompt-
ing showed substantial improvement in accu-
racy, suggesting that leveraging the reason-
ing capabilities of LLMs through sophisticated
prompting strategies can effectively address the
challenges posed by the complex morphology
and diverse dialects of the Arabic language.
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Figure 5: Variation of the number of correct answers with prompting method for each model.

Figure 6: Variation of inconclusive answers for each model with different prompting techniques.
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In future work, we aim to expand our dataset
to establish a comprehensive benchmark for
Arabic claim verification that includes diverse
claims from various domains. Additionally, a
future study could investigate how LLMs per-
form on fact-checking for claims in various inde-
pendent Arabic dialects. Given the promising
results of Cross-Lingual Prompting, we plan
to explore other advanced prompting strate-
gies, including few-shot prompting and Cross-
Lingual Prompting with Self-Consistency, to
further enhance performance.

Limitations

The scope of our analysis is restricted to a se-
lect group of LLMs. It would be interesting
to investigate the Arabic fact-checking abili-
ties of other leading models such as OpenAI’s
GPT-4 and Anthropic’s Claude 3 series. Addi-
tionally, our dataset mainly comprises claims
labeled as ground-truth false (730) as opposed
to true (41). While this skew does not compro-
mise the assessment of the LLMs’ verification
abilities, a more balanced distribution could
provide deeper insights into their fact-checking
capabilities in Arabic.
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A Appendix
A.1 Dataset Creation
A.1.1 Dataset Statistics
The X-fact dataset (Gupta and Srikumar,
2021b) was utilized as our primary data source.

The claims in the dataset are sourced from
https://misbar.com.

A.1.2 Preprocessing Steps
1. Filtering: We filtered the dataset to in-
clude only claims that were labeled as either
"true" or "false". Claims with other labels or
those lacking verification were excluded from
the finalized dataset.
2. Combining Splits: After filtering, the
claims from the Train, Dev, and In-domain
Test (α1) splits were combined to form a single
dataset for our experiments.

A.1.3 Dataset Composition
Table 2 shows the total number of Arabic
claims and the number of Arabic claims
filtered. After pre-processing, the test dataset
contained a total of 771 Arabic claims.

Number of claims from Train set: 643
Number of claims from Dev set: 88
Number of claims from In-domain Test (α1)
set: 40

A.1.4 Label Distribution
TRUE Claims: 41 claims (5.32%)
FALSE Claims: 730 claims (94.68%)

A.2 Computational Resources
All experiments were conducted using a combi-
nation of cloud-based GPU instances and local
compute resources. The specific details of the
compute setup are outlined below:

A.2.1 GPU Resources
For training and evaluating the LLMs, we uti-
lized the following GPU configurations:

• Cloud GPU Instances: Experiments
were primarily conducted on NVIDIA
A100 40GB GPUs hosted on cloud
providers (e.g., AWS EC2, Google Cloud
Platform). Each instance included 8
A100 GPUs with 320GB of total VRAM.
The experiments on these instances ran
across multiple GPUs in parallel for faster
throughput.

• Local GPU Instances: Some exper-
iments were run locally on a system
equipped with 2 NVIDIA RTX 3090 GPUs,
each with 24GB of VRAM.

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://doi.org/10.18653/v1/2023.emnlp-main.163
https://doi.org/10.18653/v1/2023.emnlp-main.163
https://doi.org/10.18653/v1/2023.emnlp-main.163
https://doi.org/10.3389/frai.2024.1341697
https://doi.org/10.3389/frai.2024.1341697
https://doi.org/10.3389/frai.2024.1341697
https://arxiv.org/abs/2402.18045
https://arxiv.org/abs/2402.18045
https://arxiv.org/abs/2311.08401
https://arxiv.org/abs/2311.08401
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2401.15498
https://arxiv.org/abs/2401.15498
https://misbar.com
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Dataset Split Total Number of Claims Filtered Number of Arabic Claims (True & False)

Train 18246 643

Dev 3657 88

In-domain Test (α1) 2406 40

Total 24309 771

Table 2: Summary of the dataset splits before and after filtering claims labeled as ‘TRUE’ or ‘FALSE’.

A.2.2 Compute Time
• Zero-Shot Prompting: Each model re-

quired approximately 1 hour of compute
time on a single GPU for evaluating the
771 claims using zero-shot prompting.

• Chain-of-Thought Prompting: En-
glish Chain-of-Thought and Cross-Lingual
Chain-of-Thought evaluations required
about 3 hours per model per experiment,
as generating reasoning chains increased
compute time.

• Self-Consistency: The self-consistency
experiments, which required generating
multiple reasoning paths for each claim,
took approximately 6 hours per model.

A.2.3 Total Compute Resources
The total compute time across all models
and experiments was approximately 100 GPU
hours. Most of this time was spent on the
Self-Consistency and Cross-Lingual Prompting
experiments due to the additional reasoning
paths generated.

A.2.4 Memory and Storage
Each experiment required at least 200GB of
storage for caching intermediate results and
model checkpoints. The average memory usage
was 120GB during peak execution of the larger
models (e.g., Llama 3 70B).

A.2.5 Software Environment
All experiments were run using the following
software stack:

• Operating System: Ubuntu 20.04 LTS

• Deep Learning Framework: PyTorch
2.0

• CUDA Version: 11.7

• Other Dependencies: Transformers
(Hugging Face), Python 3.9, and specific
drivers for NVIDIA GPUs.
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