
Processings of the 1st Workshop on NLP for Languages Using Arabic Script (AbjadNLP), pages 37–43
January 19, 2025. ©2025 Association for Computational Linguistics

37

DadmaTools V2: an Adapter-Based Natural Language Processing Toolkit
for the Persian Language

Sadegh Jafari1, Farhan Farsi2, Navid Ebrahimi1,
Mohamad Bagher Sajadi3, Sauleh Eetemadi4

1Iran University of Science and Technology, 2Amirkabir University of Technology - Tehran Polytechnic,
3Islamic Azad University Tehran Central Branch, 4University of Birmingham

sadegh_jafari@comp.iust.ac.ir, farhan1379@aut.ac.ir,
n_ebrahimi@comp.iust.ac.ir, sajadi@dadmatech.ir,

s.eetemadi@bham.ac.uk

Abstract

DadmaTools V2 is a comprehensive repository
designed to enhance NLP capabilities for the
Persian language, catering to industry practi-
tioners seeking practical and efficient solutions.
The toolkit provides extensive code examples
demonstrating the integration of its models with
popular NLP frameworks such as Trankit 1 and
Transformers, as well as deep learning frame-
works like PyTorch. Additionally, DadmaTools
supports widely used Persian embeddings and
datasets, ensuring robust language processing
capabilities. The latest version of DadmaTools
introduces an adapter-based technique, signifi-
cantly reducing memory usage by employing a
shared pre-trained model across various tasks,
supplemented with task-specific adapter layers.
This approach eliminates the need for main-
taining multiple pre-trained models, optimiz-
ing resource utilization. Enhancements in this
version include adding new modules such as a
sentiment detector, an informal-to-formal text
converter, and a spell checker, further expand-
ing the toolkit’s functionality. DadmaTools V2
thus represents a powerful, efficient, and versa-
tile resource for advancing Persian NLP appli-
cations.

1 Introduction

The availability of NLP tools for low-resource lan-
guages is crucial for the advancement of more
complex NLP applications within those languages.
These tools provide foundational capabilities that
facilitate the development of higher-level language
processing tasks. Despite the importance, exist-
ing NLP toolkits which are supporting Persian lan-
guage, such as Hazm 2, Stanza(Qi et al., 2020),
and Parsivar (Mohtaj et al., 2018) 3, offer only ba-
sic functionalities like tokenization, lemmatization,
stemming, POS tagging, and dependency parsing.

1https://github.com/nlp-uoregon/trankit
2https://github.com/roshan-research/hazm
3https://github.com/ICTRC/Parsivar

However, they lack advanced generative tools that
can further enhance language processing capabil-
ities. DadmaTools V2 aims to address these gaps
by introducing several rare and specialized mod-
ules for Persian NLP. Notably, it includes a Kasre-
ezafe detection module, an informal-to-formal text
converter, and a spell checker, and also includes
famous modules like NER, and sentiment detector,
features not present in other Persian NLP toolkits.
These additions make DadmaTools V2 a more com-
prehensive and versatile toolkit, catering to a wider
range of NLP applications.

Furthermore, one of the significant challenges in
developing countries like Iran is the limited access
to suitable hardware, such as GPUs. Running multi-
ple NLP tools, each requiring a separate pre-trained
model, can demand substantial GPU and RAM re-
sources. This issue is exacerbated when text em-
beddings are calculated multiple times within a
single processing pipeline, leading to inefficiencies
in both memory usage and processing speed. To
overcome these challenges, DadmaTools V2 em-
ploys an adapter-based approach. This technique
allows for the use of a shared pre-trained model
across various tasks, with task-specific adapter lay-
ers added as needed. This method significantly
reduces memory consumption and enhances the
speed of the processing pipeline, making it more
feasible to run advanced NLP tasks on limited hard-
ware resources.

In summary, DadmaTools V2 not only fills the
gaps left by existing Persian NLP toolkits by offer-
ing unique and advanced modules but also intro-
duces an efficient, memory-saving approach that
is particularly beneficial in resource-constrained
environments. This makes it a valuable resource
for both researchers and practitioners working with
the Persian language.

https://github.com/nlp-uoregon/trankit
https://github.com/roshan-research/hazm
https://github.com/ICTRC/Parsivar

38

2 System Usage

Explore the detailed user guide for DadmaTools at:
https://github.com/Dadmatech/DadmaTools.
Installation: This Python NLP toolkit can be

found on PyPI:
https://pypi.org/project/dadmatools/. it can be

installed via pip by using:
PIP install dadmatools

Initialize a Pipeline. DadmaTools is hardware-
agnostic, functioning efficiently on both GPUs and
CPUs (default: GPU). Users can leverage custom
processors by specifying their names as arguments
to the language.Pipeline function. This gener-
ates a Doc instance encapsulating all processed text
properties. The default pipeline includes a tok-
enizer, while dependency parser and POS tagger
are loaded together due to the underlying Trankit
toolkit (Van Nguyen et al., 2021) dependency.

Preferred pre-trained models are automatically
downloaded from the DadmaTech Hugging Face
Hub.

import dadmatools.pipeline.language as language

here Dependency parser and pos tagger will be
loaded togetter

as tokenizer is the default tool, it will be
loaded as well even without calling

pips = 'lem,pos,ner,dep,cons,spellchecker,
kasreh,sent,itf'

nlp = language.Pipeline(pips)

3 System Design

DadmaTools V2 is the next generation of the Dad-
maTools NLP pipeline, offering significant ad-
vancements in efficiency and functionality. Build-
ing upon the foundation of its predecessor, Dadma-
Tools V1 (Etezadi et al., 2022), it incorporates the
adapter technique to achieve substantial improve-
ments in processing speed and memory usage. This
technique modifies only two layers of a pre-trained
model, keeping the rest static, resulting in a faster
and more lightweight pipeline ideal for real-world
applications.

Based on Figure 1, while DadmaTools V2 lever-
ages the Trankit toolkit for its adapter implementa-
tion, it extends beyond Trankit’s capabilities. The
Trankit toolkit, a lightweight Transformer-based
toolkit supporting over 50 languages, enables fine-
tuning pre-trained models on specific datasets for
various basic NLP tasks. However, DadmaTools
V2 encompasses additional functionalities tailored

for specialized tasks that fall outside Trankit’s limi-
tations. These specialized tasks require tailored ap-
proaches within the DadmaTools framework, pro-
viding a more comprehensive solution for a wider
range of NLP needs.

3.1 Adapter Based Modules
In the adapter modules, we used the XLM-
RoBERTa-base (Conneau et al., 2019) as the pre-
trained model and trained different tasks as adapter
layers on top of the pre-trained model. Addition-
ally, in each epoch, we saved the best model and
ran the training process until overfitting occurred.

• Lemmatization. We use the Seraji dataset
(Seraji et al., 2016) to train lemmatization in
the Persian Trankit tools.

• Part of Speech Tagging. We use UPOS 4 to
evaluate our part-of-speech tagging module,
and we also train it using the Seraji dataset.

• Dependency Parsing. We used the Seraji
dataset to train dependency parsing and evalu-
ated it using the LAS 5 and UAS 6 metrics.

• Name Entity Recognition. The Named En-
tity Recognition (NER) task can be considered
a type of token classification task. The goal
is to assign a corresponding label to each to-
ken in a text. To address this challenge, we
employed the Trankit module, which consists
of a feedforward layer followed by a Con-
ditional Random Field (CRF). This model
assigns BIO (Beginning, Inside, Outside)
tags to each token. We trained an adapter
layer on the Arman(Poostchi et al., 2018) and
Peyma(Shahshahani et al., 2018) datasets for
6 epochs using Trankit.

• Kasreh-Ezafeh Detecting. kasreh-ezafe is a
specific task in the Persian language, in Per-
sian language it connects two words, Ezafe is
one of the salient factors in Persian phonol-
ogy and morphology to understand the mean-
ing of a sentence completely and truly, and
on the other hand, detecting kasreh-ezafe is
a crucial roll in text to speech task(Ansari
et al., 2023). This task like the NER task
is a kind of token classification task, so sim-
ply we used the the base that the Trankit tool

4Universal part of speech
5Labeled attachment score
6Unlabeled attachment score

https://github.com/Dadmatech/DadmaTools
https://pypi.org/project/dadmatools/

39

Figure 1: Overall architecture of the Dadmatools toolkit. White components are unchanged from the previous
version, blue components are new, and green components have been modified.

provided for the NER task. To address this
issue, we train the Trankit model for the token
classification task for 8 epochs on the Bijan
Khan dataset(Bijankhan et al., 2011). If some-
one wants to know more about Kasreh-ezafe,
please refer to this website 7.

• Sentiment Analysis The sentiment analyzer
module is responsible for detecting sentiments
in text, particularly for social media analy-
sis purposes. To implement this module, we
edited the Trankit codes and added a docu-
ment classifier that uses the CLS token as a
feature for the sentiment task. The output of
this task is either "Sad" or "Happy." This task
was trained using the Snappfood sentiment
dataset 8 for 80 epochs.

3.2 Additional Modules

Some of our modules are not in the adapter pipeline,
and we plan to add them in future work. These
modules require something like an n-gram model
and some rule-based algorithms. We will try to
replace them with transformer-based modules.

7https://learnpersian.us/en/Ezafe-in-Persian
8https://hooshvare.github.io/docs/datasets/sa#snappfood

• Informal To Formal. Informal2Formal tech-
nology leverages NLP techniques to convert
text from an informal tone to a formal one,
making it particularly useful in professional
or academic settings. This technology trans-
forms colloquialisms, contractions, and first-
person pronouns into more formal language.
The algorithm of the Informal2Formal module
is shown in Algorithm 1. It comprises several
key classes and functions:

– FormalityTransformer. The primary
class converts informal Persian text to
formal text using a language model, verb
handling, and tokenization. It is based
on the KenLM toolkit 9 for building and
querying n-gram language models.

– Kelm_Wrapper. A wrapper around
the KenLM language model(Heafield,
2011) that provides methods to obtain the
best candidate words and n-gram phrases
based on the model’s scores.

– InformalTokenizer. Responsible for to-
kenizing the informal text.

9https://github.com/kpu/kenlm

https://learnpersian.us/en/Ezafe-in-Persian
https://learnpersian.us/en/Ezafe-in-Persian
https://hooshvare.github.io/docs/datasets/sa#snappfood
https://github.com/kpu/kenlm

40

– VerbHandler. Manages verb transfor-
mations within the text.

– OneShotTransformer. Applies a set
of predefined prefix and postfix rules to
transform the text from informal to for-
mal. The rules are defined in the Prefix
and Postfix classes, specifying the word
to be transformed, the level of transfor-
mation, and other properties such as con-
necting characters and ignored parts of
speech.

Algorithm 1 Informal To Formal
Require: model, sentence
Ensure: best_sequence

1: out_dict← ∅
2: txt← Clean the input sentence
3: is_valid← Define validation function for tokens
4: cnd_tokens← Tokenize the cleaned text
5: for tokens∈ cnd_tokens do
6: tokens← Remove empty tokens
7: new_tokens← Split tokens into sub-tokens
8: txt← Join sub-tokens into a single string
9: tokens← Split the string into individual tokens

10: candidates← []
11: for index ∈ range(len(tokens)) do
12: tok← tokens[index]
13: cnd← ∅
14: pos← Determine if the token is a verb
15: f_words_lemma← Transform the token based on POS
16: f_words_lemma← Apply filtering rules to transformed words
17: for index, (word, lemma) ∈ enumerate(f_words_lemma) do
18: should_filter← original_word∈ model.vocab and (len(word.split()) >

1 or ’’ ∈ word)
19: if pos ̸= ’VERB’ and tok /∈ model.mapper and should_filter then
20: f_words_lemma[index]← (tok, tok)
21: else
22: word_repr← Format the word representation
23: word_repr←Modify the word representation using GPT-2 specific

rules
24: f_words_lemma[index]← (word, word_repr)
25: end if
26: end for
27: if f_words_lemma then
28: cnd.update(f_words_lemma)
29: else
30: cnd← {(tok, tok)}
31: end if
32: candidates.append(cnd)
33: end for
34: all_combinations← Generate all combinations of candidate tokens
35: all_combinations_list← Convert combinations to a list
36: for id, cnd∈ enumerate(all_combinations_list) do
37: normal_seq← Join tokens in the combination to form a sequence
38: lemma_seq← Join lemmas in the combination to form a sequence
39: lemma_seq← Clean the sequence for the language model
40: out_dict[id]← (normal_seq, lemma_seq)
41: end for
42: candidates← Extract candidate sequences for language model scoring
43: best_sequence← Select the best sequence using the language model
44: return best_sequence
45: end for

• Spell Checker. Spell checking typically in-
volves two stages. First, the model iden-
tifies errors within the text, such as typos,
misspellings, and merged words. Second,
it corrects these identified mistakes. Recent
models address both stages jointly. Our pro-
posed spell checker module, a key compo-
nent of our NLP toolkit, addresses this issue.
Inspired by recent research(Jayanthi et al.,

2020), the spell-checking problem was mod-
eled as a token classification task, leveraging
powerful transformer-based models such as
BERT and RoBERTa.In our approach, the fi-
nal dense layer of each token has a dimension
of d× (n+ 1) instead of d× n. Here, d rep-
resents the vector dimension of the final layer
of the transformer-based model, and n is the
number of words in the dictionary. The n+ 1
term accounts for the possibility that a word
might not need to be changed. If a word is
incorrect, it is assigned to one of the n valid
tokens in the dictionary.

4 Evaluation

We have evaluated 9 components. Since the tasks
are naturally different from each other, we catego-
rized them into three subcategories:

1. Basic NLP tasks using the Adapter architec-
ture (7 modules),

2. Spell-checker,

3. Informal to formal.

However, we could not evaluate the normalizer
and chunker modules because no specific Persian
datasets are available for these tasks.

4.1 NLP basic tasks
This section compares our basic and common tasks,
such as lemmatization, POS tagging, NER, Kasreh-
ezafeh, dependency parsing (UAS and LAS met-
rics), and sentiment analysis, with those found in
other well-known Persian toolkits. The results are
shown in Table 1.

One of the key advantages of Dadmatools V2
over V1 is its compact size, made possible by the
adapter technique, which reduces the model size by
three times. While Dadmatools V2 excels in some
tasks and V1 in others, the significantly smaller size
of V2 is an important consideration. We compared
the toolkits based on their performance and the
number of parameters to provide a comprehensive
evaluation.

4.2 Spell checker
We evaluated our spellchecker modules against
other spell-checking models because there is cur-
rently no comprehensive toolkit available in Persian
capable of spell-checking. Table 2 shows the re-
sults of the spellchecker evaluation that tests using

41

Toolkit M
od

el
Si

ze
(G

B
)

L
em

m
a

PO
S

N
E

R

K
as

re
h-

ez
af

eh

U
A

S

L
A

S

Se
nt

im
en

tA
na

ly
si

s

C
on

st
itu

en
cy

Pa
rs

er

Dadmatools V2 1.24 97.95 97.35 95.3 97.29 91.38 88.68 87.12 82.88
Dadmatools V1 3.92 97.86 97.83 - - 92.5 89.23 - -

Stanza - 91.35 97.69 - - 90.98 87.96 - 80.28
Hazm - 89.9 - - - - - - -

Table 1: Performance Evaluation of NLP Tools: NER (Arman, Peyma), Kasreh-ezafeh Detection (Bijan Khan),
Sentiment Analysis (Snappfood), Lemmatization/POS Tagging/Dependency Parsing (Seraji), and Constituency
Parsing.

Model WDR WCR CWR Precision
Dadmatools V2 0.7647 0.6824 0.0019 0.9774

Paknevis 0.7843 0.6706 0.228 0.7921
Google 0.7392 0.702 0.0045 0.0449

Virastman(Oji et al.) 0.6 0.5 0.0032 0.9533

Table 2: Performance of Spell Checking Models on the Nevise Dataset.

Nevise dataset 10. The models are assessed using
four key metrics: Wrong Detection Rate (WDR),
Wrong Correction Rate (WCR), Correct to Wrong
Rate (CWR), and Precision, which are explained
below:

• Wrong Detection Rate(WDR). Measures the
model’s tendency to flag correctly spelled
words as errors. A lower WDR indicates fewer
false positives.

• Wrong Correction Rate(WCR). Measures
the model’s accuracy in suggesting correc-
tions. A lower WCR indicates the model pro-
poses fewer incorrect suggestions.

• Correct to Wrong Rate(CWR). Measures
the model’s tendency to incorrectly change
correct words. Ideally, CWR should be mini-
mal, reflecting the ability to avoid unnecessary
modifications.

• Precision. Measures the proportion of true
errors the model correctly identifies. A higher
precision indicates the model is more accurate
in pinpointing actual spelling mistakes.

Model TeleCrowd
Corpus

Tajalli et al.
(2023)

Corpus
Dadmatools

V2
0.711 0.664

Adibian and
Momtazi

(2022) model
0.707 -

TeleCrowd 0.54 -

Table 3: Comparison of BLEU-1 scores for Informal-to-
Formal translation across different models and corpora.
The table displays BLEU-1 scores obtained using the
TeleCrowd corpus and the corpus from Tajalli et al.
(2023), highlighting the performance of different mod-
els in each dataset.

4.3 Informal to formal

The informal-to-formal task is challenging in Per-
sian, and few models and datasets are available
for it. In this section, we compare our method,
particularly with the TeleCrowd (Masoumi et al.,
2020) paper, which provides both a dataset and a
model. We have the best model for this dataset. Ad-
ditionally, we ran our code on the newest dataset
published in Persian, developed by (Tajalli et al.,

10https://github.com/Dadmatech/Nevise-Dataset

https://github.com/Dadmatech/Nevise-Dataset

42

2023).

5 Conclusion and Future Work

DadmaTools V2 builds upon the foundation of V1,
leveraging adapter modules to achieve significant
efficiency and processing speed improvements. Ad-
ditionally, it introduces new advanced tasks. Dad-
maTools V2 uses XLM-RoBERTa as its pre-trained
model, enabling support for multiple languages.
Furthermore, our base model is built on Trankit’s
structure, which supports 56 languages. This ro-
bust foundation enhances the toolkit’s multilingual
capabilities and adaptability.

The adapter-based approach in DadmaTools V2
can indeed be adapted to other languages written
in the Perso-Arabic script, such as Urdu or Sindhi.
To achieve this, modifications would involve fine-
tuning the adapter modules on datasets specific to
the target language, ensuring alignment with its
unique linguistic and scriptural nuances. Addi-
tional efforts would be required to incorporate the
linguistic rules and orthographic variations of these
languages, as well as expanding the lexicon and
pre-training models to support these adaptations
effectively. This cross-lingual expansion would
not only enhance the toolkit’s versatility but also
contribute to broader accessibility and research col-
laboration across languages using the Perso-Arabic
script.

Our future work focuses on expanding the
toolkit’s NLP capabilities with tasks like text sum-
marization, emotion detection, and semantic simi-
larity analysis. This empowers users with deeper
text understanding and exploration. Computer vi-
sion functionalities like image captioning and OCR,
along with Text-to-Speech (TTS) and Automatic
Speech Recognition (ASR), are planned. More-
over, user empowerment remains central: allowing
custom models trained on user-provided data will
foster collaborative research in Persian language
processing.

References

Majid Adibian and Saeedeh Momtazi. 2022. Using
transformer-based neural models for converting in-
formal to formal text in persian. Language and Lin-
guistics, 18(35):47–69.

Ali Ansari, Zahra Ebrahimian, Ramin Toosi, and Mo-
hammad Ali Akhaee. 2023. Persian ezafeh recogni-
tion using transformer-based models. In 2023 9th

International Conference on Web Research (ICWR),
pages 283–288. IEEE.

Mahmood Bijankhan, Javad Sheykhzadegan, Moham-
mad Bahrani, and Masood Ghayoomi. 2011. Lessons
from building a persian written corpus: Peykare. Lan-
guage resources and evaluation, 45:143–164.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Romina Etezadi, Mohammad Karrabi, Najmeh Zare,
Mohamad Bagher Sajadi, and Mohammad Taher Pile-
hvar. 2022. Dadmatools: Natural language process-
ing toolkit for persian language. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstra-
tions, pages 124–130.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197, Edinburgh, Scotland. Association for Com-
putational Linguistics.

Sai Muralidhar Jayanthi, Danish Pruthi, and Graham
Neubig. 2020. NeuSpell: A neural spelling correc-
tion toolkit. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 158–164, Online.
Association for Computational Linguistics.

Vahid Masoumi, Mostafa Salehi, Hadi Veisi, Golnoush
Haddadian, Vahid Ranjbar, and Mahsa Sahebdel.
2020. Telecrowd: A crowdsourcing approach to cre-
ate informal to formal text corpora. arXiv preprint
arXiv:2004.11771.

Salar Mohtaj, Behnam Roshanfekr, Atefeh Zafarian,
and Habibollah Asghari. 2018. Parsivar: A language
processing toolkit for persian. In Proceedings of
the eleventh international conference on language
resources and evaluation (lrec 2018).

Romina Oji, Mohammad Javad Dousti, and Heshaam
Faili. Using a pre-trained language model for context-
aware error detection and correction in persian lan-
guage.

Hanieh Poostchi, Ehsan Zare Borzeshi, and Massimo
Piccardi. 2018. Bilstm-crf for persian named-entity
recognition armanpersonercorpus: the first entity-
annotated persian dataset. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018).

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. arXiv preprint arXiv:2003.07082.

https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1911.02116
https://aclanthology.org/W11-2123
https://aclanthology.org/W11-2123
https://doi.org/10.18653/v1/2020.emnlp-demos.21
https://doi.org/10.18653/v1/2020.emnlp-demos.21

43

Mojgan Seraji, Filip Ginter, and Joakim Nivre. 2016.
Universal Dependencies for Persian. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 2361–
2365, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Mahsa Sadat Shahshahani, Mahdi Mohseni, Azadeh
Shakery, and Heshaam Faili. 2018. Peyma: A tagged
corpus for persian named entities. arXiv preprint
arXiv:1801.09936.

Vahide Tajalli, Fateme Kalantari, and Mehrnoush
Shamsfard. 2023. Developing an informal-formal
persian corpus. arXiv preprint arXiv:2308.05336.

Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben
Veyseh, and Thien Huu Nguyen. 2021. Trankit: A
light-weight transformer-based toolkit for multilin-
gual natural language processing. arXiv preprint
arXiv:2101.03289.

https://aclanthology.org/L16-1374

	Introduction
	System Usage
	System Design
	Adapter Based Modules
	Additional Modules

	Evaluation
	NLP basic tasks
	Spell checker
	Informal to formal

	Conclusion and Future Work

