@inproceedings{tagliabue-etal-2025-deep,
title = "{DEEP}: an automatic bidirectional translator leveraging an {ASR} for translation of {I}talian sign language",
author = "Tagliabue, Nicolas and
Colletti, Elisa and
Dani, Francesco Roberto and
Tedesco, Roberto and
Cenceschi, Sonia and
Trivilini, Alessandro",
editor = "Mishra, Pushkar and
Muresan, Smaranda and
Yu, Tao",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-demo.22/",
doi = "10.18653/v1/2025.acl-demo.22",
pages = "221--229",
ISBN = "979-8-89176-253-4",
abstract = "DEEP is a bidirectional translation system for the Italian Sign Language, tailored to two specific, common use cases: pharmacies and the registry office of the municipality, for which a custom corpus has been collected. Two independent pipelines permit to create a chatlike interaction style, where the deaf subject just signs in front of a camera, and sees a virtual LIS interpreter, while the hearing subject reads and writes messages into a chat UI. The LIS-to-Italian pipeline leverages, in a novel way, a customized Whisper model (a wellknown speech recognition system), by means of ``pseudo-spectrograms''. The Italian-to-LIS pipeline leverages a virtual avatar created with Viggle.ai. DEEP has been evaluated with LIS signers, obtaining very promising results."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tagliabue-etal-2025-deep">
<titleInfo>
<title>DEEP: an automatic bidirectional translator leveraging an ASR for translation of Italian sign language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Tagliabue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Colletti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francesco</namePart>
<namePart type="given">Roberto</namePart>
<namePart type="family">Dani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Tedesco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sonia</namePart>
<namePart type="family">Cenceschi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Trivilini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pushkar</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-253-4</identifier>
</relatedItem>
<abstract>DEEP is a bidirectional translation system for the Italian Sign Language, tailored to two specific, common use cases: pharmacies and the registry office of the municipality, for which a custom corpus has been collected. Two independent pipelines permit to create a chatlike interaction style, where the deaf subject just signs in front of a camera, and sees a virtual LIS interpreter, while the hearing subject reads and writes messages into a chat UI. The LIS-to-Italian pipeline leverages, in a novel way, a customized Whisper model (a wellknown speech recognition system), by means of “pseudo-spectrograms”. The Italian-to-LIS pipeline leverages a virtual avatar created with Viggle.ai. DEEP has been evaluated with LIS signers, obtaining very promising results.</abstract>
<identifier type="citekey">tagliabue-etal-2025-deep</identifier>
<identifier type="doi">10.18653/v1/2025.acl-demo.22</identifier>
<location>
<url>https://aclanthology.org/2025.acl-demo.22/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>221</start>
<end>229</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DEEP: an automatic bidirectional translator leveraging an ASR for translation of Italian sign language
%A Tagliabue, Nicolas
%A Colletti, Elisa
%A Dani, Francesco Roberto
%A Tedesco, Roberto
%A Cenceschi, Sonia
%A Trivilini, Alessandro
%Y Mishra, Pushkar
%Y Muresan, Smaranda
%Y Yu, Tao
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-253-4
%F tagliabue-etal-2025-deep
%X DEEP is a bidirectional translation system for the Italian Sign Language, tailored to two specific, common use cases: pharmacies and the registry office of the municipality, for which a custom corpus has been collected. Two independent pipelines permit to create a chatlike interaction style, where the deaf subject just signs in front of a camera, and sees a virtual LIS interpreter, while the hearing subject reads and writes messages into a chat UI. The LIS-to-Italian pipeline leverages, in a novel way, a customized Whisper model (a wellknown speech recognition system), by means of “pseudo-spectrograms”. The Italian-to-LIS pipeline leverages a virtual avatar created with Viggle.ai. DEEP has been evaluated with LIS signers, obtaining very promising results.
%R 10.18653/v1/2025.acl-demo.22
%U https://aclanthology.org/2025.acl-demo.22/
%U https://doi.org/10.18653/v1/2025.acl-demo.22
%P 221-229
Markdown (Informal)
[DEEP: an automatic bidirectional translator leveraging an ASR for translation of Italian sign language](https://aclanthology.org/2025.acl-demo.22/) (Tagliabue et al., ACL 2025)
ACL