@inproceedings{wang-etal-2025-filter,
title = "Filter-And-Refine: A {MLLM} Based Cascade System for Industrial-Scale Video Content Moderation",
author = "Wang, Zixuan and
Shi, Jinghao and
Liang, Hanzhong and
Shen, Xiang and
Wen, Vera and
Chen, Zhiqian and
Wu, Yifan and
Zhang, Zhixin and
Xiong, Hongyu",
editor = "Rehm, Georg and
Li, Yunyao",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-industry.62/",
doi = "10.18653/v1/2025.acl-industry.62",
pages = "873--880",
ISBN = "979-8-89176-288-6",
abstract = "Effective content moderation is essential for video platforms to safeguard user experience and uphold community standards. While traditional video classification models effectively handle well-defined moderation tasks, they struggle with complicated scenarios such as implicit harmful content and contextual ambiguity. Multimodal large language models (MLLMs) offer a promising solution to these limitations with their superior cross-modal reasoning and contextual understanding. However, two key challenges hinder their industrial adoption. First, the high computational cost of MLLMs makes full-scale deployment impractical. Second, adapting generative models for discriminative classification remains an open research problem. In this paper, we first introduce an efficient method to transform a generative MLLM into a multimodal classifier using minimal discriminative training data. To enable industry-scale deployment, we then propose a router-ranking cascade system that integrates MLLMs with a lightweight router model. Offline experiments demonstrate that our MLLM-based approach improves F1 score by 66.50{\%} over traditional classifiers while requiring only 2{\%} of the fine-tuning data. Online evaluations show that our system increases automatic content moderation volume by 41{\%}, while the cascading deployment reduces computational cost to only 1.5{\%} of direct full-scale deployment."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-filter">
<titleInfo>
<title>Filter-And-Refine: A MLLM Based Cascade System for Industrial-Scale Video Content Moderation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zixuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinghao</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hanzhong</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiqian</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yifan</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhixin</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyu</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Georg</namePart>
<namePart type="family">Rehm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-288-6</identifier>
</relatedItem>
<abstract>Effective content moderation is essential for video platforms to safeguard user experience and uphold community standards. While traditional video classification models effectively handle well-defined moderation tasks, they struggle with complicated scenarios such as implicit harmful content and contextual ambiguity. Multimodal large language models (MLLMs) offer a promising solution to these limitations with their superior cross-modal reasoning and contextual understanding. However, two key challenges hinder their industrial adoption. First, the high computational cost of MLLMs makes full-scale deployment impractical. Second, adapting generative models for discriminative classification remains an open research problem. In this paper, we first introduce an efficient method to transform a generative MLLM into a multimodal classifier using minimal discriminative training data. To enable industry-scale deployment, we then propose a router-ranking cascade system that integrates MLLMs with a lightweight router model. Offline experiments demonstrate that our MLLM-based approach improves F1 score by 66.50% over traditional classifiers while requiring only 2% of the fine-tuning data. Online evaluations show that our system increases automatic content moderation volume by 41%, while the cascading deployment reduces computational cost to only 1.5% of direct full-scale deployment.</abstract>
<identifier type="citekey">wang-etal-2025-filter</identifier>
<identifier type="doi">10.18653/v1/2025.acl-industry.62</identifier>
<location>
<url>https://aclanthology.org/2025.acl-industry.62/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>873</start>
<end>880</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Filter-And-Refine: A MLLM Based Cascade System for Industrial-Scale Video Content Moderation
%A Wang, Zixuan
%A Shi, Jinghao
%A Liang, Hanzhong
%A Shen, Xiang
%A Wen, Vera
%A Chen, Zhiqian
%A Wu, Yifan
%A Zhang, Zhixin
%A Xiong, Hongyu
%Y Rehm, Georg
%Y Li, Yunyao
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-288-6
%F wang-etal-2025-filter
%X Effective content moderation is essential for video platforms to safeguard user experience and uphold community standards. While traditional video classification models effectively handle well-defined moderation tasks, they struggle with complicated scenarios such as implicit harmful content and contextual ambiguity. Multimodal large language models (MLLMs) offer a promising solution to these limitations with their superior cross-modal reasoning and contextual understanding. However, two key challenges hinder their industrial adoption. First, the high computational cost of MLLMs makes full-scale deployment impractical. Second, adapting generative models for discriminative classification remains an open research problem. In this paper, we first introduce an efficient method to transform a generative MLLM into a multimodal classifier using minimal discriminative training data. To enable industry-scale deployment, we then propose a router-ranking cascade system that integrates MLLMs with a lightweight router model. Offline experiments demonstrate that our MLLM-based approach improves F1 score by 66.50% over traditional classifiers while requiring only 2% of the fine-tuning data. Online evaluations show that our system increases automatic content moderation volume by 41%, while the cascading deployment reduces computational cost to only 1.5% of direct full-scale deployment.
%R 10.18653/v1/2025.acl-industry.62
%U https://aclanthology.org/2025.acl-industry.62/
%U https://doi.org/10.18653/v1/2025.acl-industry.62
%P 873-880
Markdown (Informal)
[Filter-And-Refine: A MLLM Based Cascade System for Industrial-Scale Video Content Moderation](https://aclanthology.org/2025.acl-industry.62/) (Wang et al., ACL 2025)
ACL
- Zixuan Wang, Jinghao Shi, Hanzhong Liang, Xiang Shen, Vera Wen, Zhiqian Chen, Yifan Wu, Zhixin Zhang, and Hongyu Xiong. 2025. Filter-And-Refine: A MLLM Based Cascade System for Industrial-Scale Video Content Moderation. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 873–880, Vienna, Austria. Association for Computational Linguistics.