@inproceedings{liu-etal-2025-singakids,
title = "{S}inga{K}ids: A Multilingual Multimodal Dialogic Tutor for Language Learning",
author = "Liu, Zhengyuan and
Lin, Geyu and
Tan, Hui Li and
Zhang, Huayun and
Lu, Yanfeng and
Gao, Xiaoxue and
Yin, Stella Xin and
He, Sun and
Goh, Hock Huan and
Wong, Lung Hsiang and
Chen, Nancy F.",
editor = "Rehm, Georg and
Li, Yunyao",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-industry.86/",
doi = "10.18653/v1/2025.acl-industry.86",
pages = "1244--1253",
ISBN = "979-8-89176-288-6",
abstract = "The integration of generative artificial intelligence into educational applications has enhanced personalized and interactive learning experiences, and it shows strong potential to promote young learners language acquisition. However, it is still challenging to ensure consistent and robust performance across different languages and cultural contexts, and kids-friendly design requires simplified instructions, engaging interactions, and age-appropriate scaffolding to maintain motivation and optimize learning outcomes.In this work, we introduce SingaKids, a dialogic tutor designed to facilitate language learning through picture description tasks. Our system integrates dense image captioning, multilingual dialogic interaction, speech understanding, and engaging speech generation to create an immersive learning environment in four languages: English, Mandarin, Malay, and Tamil. We further improve the system through multilingual pre-training, task-specific tuning, and scaffolding optimization. Empirical studies with elementary school students demonstrate that SingaKids provides effective dialogic teaching, benefiting learners at different performance levels."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-singakids">
<titleInfo>
<title>SingaKids: A Multilingual Multimodal Dialogic Tutor for Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhengyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Geyu</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hui</namePart>
<namePart type="given">Li</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huayun</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanfeng</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoxue</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stella</namePart>
<namePart type="given">Xin</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sun</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hock</namePart>
<namePart type="given">Huan</namePart>
<namePart type="family">Goh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lung</namePart>
<namePart type="given">Hsiang</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="given">F</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Georg</namePart>
<namePart type="family">Rehm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-288-6</identifier>
</relatedItem>
<abstract>The integration of generative artificial intelligence into educational applications has enhanced personalized and interactive learning experiences, and it shows strong potential to promote young learners language acquisition. However, it is still challenging to ensure consistent and robust performance across different languages and cultural contexts, and kids-friendly design requires simplified instructions, engaging interactions, and age-appropriate scaffolding to maintain motivation and optimize learning outcomes.In this work, we introduce SingaKids, a dialogic tutor designed to facilitate language learning through picture description tasks. Our system integrates dense image captioning, multilingual dialogic interaction, speech understanding, and engaging speech generation to create an immersive learning environment in four languages: English, Mandarin, Malay, and Tamil. We further improve the system through multilingual pre-training, task-specific tuning, and scaffolding optimization. Empirical studies with elementary school students demonstrate that SingaKids provides effective dialogic teaching, benefiting learners at different performance levels.</abstract>
<identifier type="citekey">liu-etal-2025-singakids</identifier>
<identifier type="doi">10.18653/v1/2025.acl-industry.86</identifier>
<location>
<url>https://aclanthology.org/2025.acl-industry.86/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1244</start>
<end>1253</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SingaKids: A Multilingual Multimodal Dialogic Tutor for Language Learning
%A Liu, Zhengyuan
%A Lin, Geyu
%A Tan, Hui Li
%A Zhang, Huayun
%A Lu, Yanfeng
%A Gao, Xiaoxue
%A Yin, Stella Xin
%A He, Sun
%A Goh, Hock Huan
%A Wong, Lung Hsiang
%A Chen, Nancy F.
%Y Rehm, Georg
%Y Li, Yunyao
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-288-6
%F liu-etal-2025-singakids
%X The integration of generative artificial intelligence into educational applications has enhanced personalized and interactive learning experiences, and it shows strong potential to promote young learners language acquisition. However, it is still challenging to ensure consistent and robust performance across different languages and cultural contexts, and kids-friendly design requires simplified instructions, engaging interactions, and age-appropriate scaffolding to maintain motivation and optimize learning outcomes.In this work, we introduce SingaKids, a dialogic tutor designed to facilitate language learning through picture description tasks. Our system integrates dense image captioning, multilingual dialogic interaction, speech understanding, and engaging speech generation to create an immersive learning environment in four languages: English, Mandarin, Malay, and Tamil. We further improve the system through multilingual pre-training, task-specific tuning, and scaffolding optimization. Empirical studies with elementary school students demonstrate that SingaKids provides effective dialogic teaching, benefiting learners at different performance levels.
%R 10.18653/v1/2025.acl-industry.86
%U https://aclanthology.org/2025.acl-industry.86/
%U https://doi.org/10.18653/v1/2025.acl-industry.86
%P 1244-1253
Markdown (Informal)
[SingaKids: A Multilingual Multimodal Dialogic Tutor for Language Learning](https://aclanthology.org/2025.acl-industry.86/) (Liu et al., ACL 2025)
ACL
- Zhengyuan Liu, Geyu Lin, Hui Li Tan, Huayun Zhang, Yanfeng Lu, Xiaoxue Gao, Stella Xin Yin, Sun He, Hock Huan Goh, Lung Hsiang Wong, and Nancy F. Chen. 2025. SingaKids: A Multilingual Multimodal Dialogic Tutor for Language Learning. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 1244–1253, Vienna, Austria. Association for Computational Linguistics.