@inproceedings{go-etal-2025-xdac,
title = "{XDAC}: {XAI}-Driven Detection and Attribution of {LLM}-Generated News Comments in {K}orean",
author = "Go, Wooyoung and
Kim, Hyoungshick and
Oh, Alice and
Kim, Yongdae",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.1108/",
doi = "10.18653/v1/2025.acl-long.1108",
pages = "22728--22750",
ISBN = "979-8-89176-251-0",
abstract = "Large language models (LLMs) generate human-like text, raising concerns about their misuse in creating deceptive content. Detecting LLM-generated comments (LGC) in online news is essential for preserving online discourse integrity and preventing opinion manipulation. However, effective detection faces two key challenges; the brevity and informality of news comments limit traditional methods, and the absence of a publicly available LGC dataset hinders model training, especially for languages other than English. To address these challenges, we propose a twofold approach. First, we develop an LGC generation framework to construct a high-quality dataset with diverse and complex examples. Second, we introduce XDAC ($\textbf{X}$AI-Driven $\textbf{D}$etection and $\textbf{A}$ttribution of LLM-Generated $\textbf{C}$omments), a framework utilizing explainable AI, designed for the detection and attribution of short-form LGC in Korean news articles. XDAC leverages XAI to uncover distinguishing linguistic patterns at both token and character levels. We present the first large-scale benchmark dataset, comprising 1.3M human-written comments from Korean news platforms and 1M LLM-generated comments from 14 distinct models. XDAC outperforms existing methods, achieving a 98.5{\%} F1 score in LGC detection with a relative improvement of 68.1{\%}, and an 84.3{\%} F1 score in attribution. To validate real-world applicability, we analyze 5.24M news comments from Naver, South Korea{'}s leading online news platform, identifying 27,029 potential LLM-generated comments."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="go-etal-2025-xdac">
<titleInfo>
<title>XDAC: XAI-Driven Detection and Attribution of LLM-Generated News Comments in Korean</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wooyoung</namePart>
<namePart type="family">Go</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyoungshick</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alice</namePart>
<namePart type="family">Oh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongdae</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Large language models (LLMs) generate human-like text, raising concerns about their misuse in creating deceptive content. Detecting LLM-generated comments (LGC) in online news is essential for preserving online discourse integrity and preventing opinion manipulation. However, effective detection faces two key challenges; the brevity and informality of news comments limit traditional methods, and the absence of a publicly available LGC dataset hinders model training, especially for languages other than English. To address these challenges, we propose a twofold approach. First, we develop an LGC generation framework to construct a high-quality dataset with diverse and complex examples. Second, we introduce XDAC (XAI-Driven Detection and Attribution of LLM-Generated Comments), a framework utilizing explainable AI, designed for the detection and attribution of short-form LGC in Korean news articles. XDAC leverages XAI to uncover distinguishing linguistic patterns at both token and character levels. We present the first large-scale benchmark dataset, comprising 1.3M human-written comments from Korean news platforms and 1M LLM-generated comments from 14 distinct models. XDAC outperforms existing methods, achieving a 98.5% F1 score in LGC detection with a relative improvement of 68.1%, and an 84.3% F1 score in attribution. To validate real-world applicability, we analyze 5.24M news comments from Naver, South Korea’s leading online news platform, identifying 27,029 potential LLM-generated comments.</abstract>
<identifier type="citekey">go-etal-2025-xdac</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.1108</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.1108/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>22728</start>
<end>22750</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T XDAC: XAI-Driven Detection and Attribution of LLM-Generated News Comments in Korean
%A Go, Wooyoung
%A Kim, Hyoungshick
%A Oh, Alice
%A Kim, Yongdae
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F go-etal-2025-xdac
%X Large language models (LLMs) generate human-like text, raising concerns about their misuse in creating deceptive content. Detecting LLM-generated comments (LGC) in online news is essential for preserving online discourse integrity and preventing opinion manipulation. However, effective detection faces two key challenges; the brevity and informality of news comments limit traditional methods, and the absence of a publicly available LGC dataset hinders model training, especially for languages other than English. To address these challenges, we propose a twofold approach. First, we develop an LGC generation framework to construct a high-quality dataset with diverse and complex examples. Second, we introduce XDAC (XAI-Driven Detection and Attribution of LLM-Generated Comments), a framework utilizing explainable AI, designed for the detection and attribution of short-form LGC in Korean news articles. XDAC leverages XAI to uncover distinguishing linguistic patterns at both token and character levels. We present the first large-scale benchmark dataset, comprising 1.3M human-written comments from Korean news platforms and 1M LLM-generated comments from 14 distinct models. XDAC outperforms existing methods, achieving a 98.5% F1 score in LGC detection with a relative improvement of 68.1%, and an 84.3% F1 score in attribution. To validate real-world applicability, we analyze 5.24M news comments from Naver, South Korea’s leading online news platform, identifying 27,029 potential LLM-generated comments.
%R 10.18653/v1/2025.acl-long.1108
%U https://aclanthology.org/2025.acl-long.1108/
%U https://doi.org/10.18653/v1/2025.acl-long.1108
%P 22728-22750
Markdown (Informal)
[XDAC: XAI-Driven Detection and Attribution of LLM-Generated News Comments in Korean](https://aclanthology.org/2025.acl-long.1108/) (Go et al., ACL 2025)
ACL