@inproceedings{yavas-etal-2025-relation,
title = "On the Relation Between Fine-Tuning, Topological Properties, and Task Performance in Sense-Enhanced Embeddings",
author = "Yavas, Deniz Ekin and
Bernard, Timoth{\'e}e and
Crabb{\'e}, Benoit and
Kallmeyer, Laura",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.1151/",
doi = "10.18653/v1/2025.acl-long.1151",
pages = "23610--23625",
ISBN = "979-8-89176-251-0",
abstract = "Topological properties of embeddings, such as isotropy and uniformity, are closely linked to their expressiveness, and improving these properties enhances the embeddings' ability to capture nuanced semantic distinctions. However, fine-tuning can reduce the expressiveness of the embeddings of language models. This study investigates the relation between fine-tuning, topology of the embedding space, and task performance in the context of sense knowledge enhancement, focusing on identifying the topological properties that contribute to the success of sense-enhanced embeddings. We experiment with two fine-tuning methods: *Supervised Contrastive Learning (SCL)* and *Supervised Predictive Learning (SPL)*. Our results show that SPL, the most standard approach, exhibits varying effectiveness depending on the language model and is inconsistent in producing successful sense-enhanced embeddings. In contrast, SCL achieves this consistently. Furthermore, while the embeddings with only increased *sense-alignment* show reduced task performance, those that also exhibit high *isotropy* and balance *uniformity* with *sense-alignment* achieve the best results. Additionally, our findings indicate that supervised and unsupervised tasks benefit from these topological properties to varying degrees."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yavas-etal-2025-relation">
<titleInfo>
<title>On the Relation Between Fine-Tuning, Topological Properties, and Task Performance in Sense-Enhanced Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Deniz</namePart>
<namePart type="given">Ekin</namePart>
<namePart type="family">Yavas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothée</namePart>
<namePart type="family">Bernard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benoit</namePart>
<namePart type="family">Crabbé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Kallmeyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Topological properties of embeddings, such as isotropy and uniformity, are closely linked to their expressiveness, and improving these properties enhances the embeddings’ ability to capture nuanced semantic distinctions. However, fine-tuning can reduce the expressiveness of the embeddings of language models. This study investigates the relation between fine-tuning, topology of the embedding space, and task performance in the context of sense knowledge enhancement, focusing on identifying the topological properties that contribute to the success of sense-enhanced embeddings. We experiment with two fine-tuning methods: *Supervised Contrastive Learning (SCL)* and *Supervised Predictive Learning (SPL)*. Our results show that SPL, the most standard approach, exhibits varying effectiveness depending on the language model and is inconsistent in producing successful sense-enhanced embeddings. In contrast, SCL achieves this consistently. Furthermore, while the embeddings with only increased *sense-alignment* show reduced task performance, those that also exhibit high *isotropy* and balance *uniformity* with *sense-alignment* achieve the best results. Additionally, our findings indicate that supervised and unsupervised tasks benefit from these topological properties to varying degrees.</abstract>
<identifier type="citekey">yavas-etal-2025-relation</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.1151</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.1151/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>23610</start>
<end>23625</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Relation Between Fine-Tuning, Topological Properties, and Task Performance in Sense-Enhanced Embeddings
%A Yavas, Deniz Ekin
%A Bernard, Timothée
%A Crabbé, Benoit
%A Kallmeyer, Laura
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F yavas-etal-2025-relation
%X Topological properties of embeddings, such as isotropy and uniformity, are closely linked to their expressiveness, and improving these properties enhances the embeddings’ ability to capture nuanced semantic distinctions. However, fine-tuning can reduce the expressiveness of the embeddings of language models. This study investigates the relation between fine-tuning, topology of the embedding space, and task performance in the context of sense knowledge enhancement, focusing on identifying the topological properties that contribute to the success of sense-enhanced embeddings. We experiment with two fine-tuning methods: *Supervised Contrastive Learning (SCL)* and *Supervised Predictive Learning (SPL)*. Our results show that SPL, the most standard approach, exhibits varying effectiveness depending on the language model and is inconsistent in producing successful sense-enhanced embeddings. In contrast, SCL achieves this consistently. Furthermore, while the embeddings with only increased *sense-alignment* show reduced task performance, those that also exhibit high *isotropy* and balance *uniformity* with *sense-alignment* achieve the best results. Additionally, our findings indicate that supervised and unsupervised tasks benefit from these topological properties to varying degrees.
%R 10.18653/v1/2025.acl-long.1151
%U https://aclanthology.org/2025.acl-long.1151/
%U https://doi.org/10.18653/v1/2025.acl-long.1151
%P 23610-23625
Markdown (Informal)
[On the Relation Between Fine-Tuning, Topological Properties, and Task Performance in Sense-Enhanced Embeddings](https://aclanthology.org/2025.acl-long.1151/) (Yavas et al., ACL 2025)
ACL