@inproceedings{honda-oka-2025-exploring,
title = "Exploring Explanations Improves the Robustness of In-Context Learning",
author = "Honda, Ukyo and
Oka, Tatsushi",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.1155/",
doi = "10.18653/v1/2025.acl-long.1155",
pages = "23693--23714",
ISBN = "979-8-89176-251-0",
abstract = "In-context learning (ICL) has emerged as a successful paradigm for leveraging large language models (LLMs). However, it often struggles to generalize beyond the distribution of the provided demonstrations. A recent advancement in enhancing robustness is ICL with explanations (X-ICL), which improves prediction reliability by guiding LLMs to understand and articulate the reasoning behind correct labels. Building on this approach, we introduce an advanced framework that extends X-ICL by systematically exploring explanations for all possible labels (X$^2$-ICL), thereby enabling more comprehensive and robust decision-making. Experimental results on multiple natural language understanding datasets validate the effectiveness of X$^2$-ICL, demonstrating significantly improved robustness to out-of-distribution data compared to the existing ICL approaches."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="honda-oka-2025-exploring">
<titleInfo>
<title>Exploring Explanations Improves the Robustness of In-Context Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ukyo</namePart>
<namePart type="family">Honda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatsushi</namePart>
<namePart type="family">Oka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>In-context learning (ICL) has emerged as a successful paradigm for leveraging large language models (LLMs). However, it often struggles to generalize beyond the distribution of the provided demonstrations. A recent advancement in enhancing robustness is ICL with explanations (X-ICL), which improves prediction reliability by guiding LLMs to understand and articulate the reasoning behind correct labels. Building on this approach, we introduce an advanced framework that extends X-ICL by systematically exploring explanations for all possible labels (X²-ICL), thereby enabling more comprehensive and robust decision-making. Experimental results on multiple natural language understanding datasets validate the effectiveness of X²-ICL, demonstrating significantly improved robustness to out-of-distribution data compared to the existing ICL approaches.</abstract>
<identifier type="citekey">honda-oka-2025-exploring</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.1155</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.1155/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>23693</start>
<end>23714</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Explanations Improves the Robustness of In-Context Learning
%A Honda, Ukyo
%A Oka, Tatsushi
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F honda-oka-2025-exploring
%X In-context learning (ICL) has emerged as a successful paradigm for leveraging large language models (LLMs). However, it often struggles to generalize beyond the distribution of the provided demonstrations. A recent advancement in enhancing robustness is ICL with explanations (X-ICL), which improves prediction reliability by guiding LLMs to understand and articulate the reasoning behind correct labels. Building on this approach, we introduce an advanced framework that extends X-ICL by systematically exploring explanations for all possible labels (X²-ICL), thereby enabling more comprehensive and robust decision-making. Experimental results on multiple natural language understanding datasets validate the effectiveness of X²-ICL, demonstrating significantly improved robustness to out-of-distribution data compared to the existing ICL approaches.
%R 10.18653/v1/2025.acl-long.1155
%U https://aclanthology.org/2025.acl-long.1155/
%U https://doi.org/10.18653/v1/2025.acl-long.1155
%P 23693-23714
Markdown (Informal)
[Exploring Explanations Improves the Robustness of In-Context Learning](https://aclanthology.org/2025.acl-long.1155/) (Honda & Oka, ACL 2025)
ACL