@inproceedings{liu-etal-2025-dual,
title = "A Dual-Mind Framework for Strategic and Expressive Negotiation Agent",
author = "Liu, Yutong and
Shi, Lida and
Song, Rui and
Xu, Hao",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.1161/",
doi = "10.18653/v1/2025.acl-long.1161",
pages = "23840--23860",
ISBN = "979-8-89176-251-0",
abstract = "Negotiation agents need to influence the attitudes or intentions of users to reach a consensus. Strategy planning and expressive optimization are crucial aspects of effective negotiations. However, previous studies have typically focused on only one of these aspects, neglecting the fact that their combined synergistic effect can lead to better performance. Inspired by the dual-process theory in human cognition, we propose a Dual-Mind Negotiation Agent (DMNA) framework. This framework integrates an intuitive module for rapid, experience-based response and a deliberative module for slow, expression optimization. The intuitive module is trained using Monte Carlo Tree Search (MCTS) and Direct Preference Optimization (DPO), enabling it to make suitable strategic planning and expression. The deliberative module employs a multifaceted reflexion mechanism to enhance the quality of expression. Experiments conducted on negotiation datasets confirm that DMNA achieves state-of-the-art results, demonstrating an enhancement in the negotiation ability of agents."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-dual">
<titleInfo>
<title>A Dual-Mind Framework for Strategic and Expressive Negotiation Agent</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yutong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lida</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Negotiation agents need to influence the attitudes or intentions of users to reach a consensus. Strategy planning and expressive optimization are crucial aspects of effective negotiations. However, previous studies have typically focused on only one of these aspects, neglecting the fact that their combined synergistic effect can lead to better performance. Inspired by the dual-process theory in human cognition, we propose a Dual-Mind Negotiation Agent (DMNA) framework. This framework integrates an intuitive module for rapid, experience-based response and a deliberative module for slow, expression optimization. The intuitive module is trained using Monte Carlo Tree Search (MCTS) and Direct Preference Optimization (DPO), enabling it to make suitable strategic planning and expression. The deliberative module employs a multifaceted reflexion mechanism to enhance the quality of expression. Experiments conducted on negotiation datasets confirm that DMNA achieves state-of-the-art results, demonstrating an enhancement in the negotiation ability of agents.</abstract>
<identifier type="citekey">liu-etal-2025-dual</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.1161</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.1161/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>23840</start>
<end>23860</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Dual-Mind Framework for Strategic and Expressive Negotiation Agent
%A Liu, Yutong
%A Shi, Lida
%A Song, Rui
%A Xu, Hao
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F liu-etal-2025-dual
%X Negotiation agents need to influence the attitudes or intentions of users to reach a consensus. Strategy planning and expressive optimization are crucial aspects of effective negotiations. However, previous studies have typically focused on only one of these aspects, neglecting the fact that their combined synergistic effect can lead to better performance. Inspired by the dual-process theory in human cognition, we propose a Dual-Mind Negotiation Agent (DMNA) framework. This framework integrates an intuitive module for rapid, experience-based response and a deliberative module for slow, expression optimization. The intuitive module is trained using Monte Carlo Tree Search (MCTS) and Direct Preference Optimization (DPO), enabling it to make suitable strategic planning and expression. The deliberative module employs a multifaceted reflexion mechanism to enhance the quality of expression. Experiments conducted on negotiation datasets confirm that DMNA achieves state-of-the-art results, demonstrating an enhancement in the negotiation ability of agents.
%R 10.18653/v1/2025.acl-long.1161
%U https://aclanthology.org/2025.acl-long.1161/
%U https://doi.org/10.18653/v1/2025.acl-long.1161
%P 23840-23860
Markdown (Informal)
[A Dual-Mind Framework for Strategic and Expressive Negotiation Agent](https://aclanthology.org/2025.acl-long.1161/) (Liu et al., ACL 2025)
ACL