@inproceedings{liu-etal-2025-unraveling,
title = "Unraveling the Mechanics of Learning-Based Demonstration Selection for In-Context Learning",
author = "Liu, Hui and
Wang, Wenya and
Sun, Hao and
Tian, Chris Xing and
Kong, Chenqi and
Dong, Xin and
Li, Haoliang",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.132/",
doi = "10.18653/v1/2025.acl-long.132",
pages = "2623--2641",
ISBN = "979-8-89176-251-0",
abstract = "Large Language Models (LLMs) have demonstrated impressive in-context learning (ICL) capabilities from few-shot demonstration exemplars. Recent learning-based demonstration selection methods have proven beneficial to ICL by choosing more useful exemplars. While these methods generally assume they learn better similarity measurements between exemplars and test cases from the proxy task, what kinds of similarities are captured by them and are vital to performing ICL still need to be explored. To dive into this question, we analyze the working mechanism of learning-based demonstration selection methods and empirically identify two essential factors of their similarity measurements: 1) Integrating task-agnostic similarities of different levels between the input of exemplars and test cases; 2) Incorporating task-specific similarity between the output of exemplars and test cases. We validate these two findings through extensive quantitative analysis across ten datasets and various LLMs. Based on these insights, we introduce two simplified exemplar selection methods, MLSM and TTF, catering to task-agnostic and task-specific demands to eliminate costly data collection. The effectiveness of both methods evince our findings again and pave the way for future studies."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-unraveling">
<titleInfo>
<title>Unraveling the Mechanics of Learning-Based Demonstration Selection for In-Context Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hui</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenya</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="given">Xing</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenqi</namePart>
<namePart type="family">Kong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haoliang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Large Language Models (LLMs) have demonstrated impressive in-context learning (ICL) capabilities from few-shot demonstration exemplars. Recent learning-based demonstration selection methods have proven beneficial to ICL by choosing more useful exemplars. While these methods generally assume they learn better similarity measurements between exemplars and test cases from the proxy task, what kinds of similarities are captured by them and are vital to performing ICL still need to be explored. To dive into this question, we analyze the working mechanism of learning-based demonstration selection methods and empirically identify two essential factors of their similarity measurements: 1) Integrating task-agnostic similarities of different levels between the input of exemplars and test cases; 2) Incorporating task-specific similarity between the output of exemplars and test cases. We validate these two findings through extensive quantitative analysis across ten datasets and various LLMs. Based on these insights, we introduce two simplified exemplar selection methods, MLSM and TTF, catering to task-agnostic and task-specific demands to eliminate costly data collection. The effectiveness of both methods evince our findings again and pave the way for future studies.</abstract>
<identifier type="citekey">liu-etal-2025-unraveling</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.132</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.132/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>2623</start>
<end>2641</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unraveling the Mechanics of Learning-Based Demonstration Selection for In-Context Learning
%A Liu, Hui
%A Wang, Wenya
%A Sun, Hao
%A Tian, Chris Xing
%A Kong, Chenqi
%A Dong, Xin
%A Li, Haoliang
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F liu-etal-2025-unraveling
%X Large Language Models (LLMs) have demonstrated impressive in-context learning (ICL) capabilities from few-shot demonstration exemplars. Recent learning-based demonstration selection methods have proven beneficial to ICL by choosing more useful exemplars. While these methods generally assume they learn better similarity measurements between exemplars and test cases from the proxy task, what kinds of similarities are captured by them and are vital to performing ICL still need to be explored. To dive into this question, we analyze the working mechanism of learning-based demonstration selection methods and empirically identify two essential factors of their similarity measurements: 1) Integrating task-agnostic similarities of different levels between the input of exemplars and test cases; 2) Incorporating task-specific similarity between the output of exemplars and test cases. We validate these two findings through extensive quantitative analysis across ten datasets and various LLMs. Based on these insights, we introduce two simplified exemplar selection methods, MLSM and TTF, catering to task-agnostic and task-specific demands to eliminate costly data collection. The effectiveness of both methods evince our findings again and pave the way for future studies.
%R 10.18653/v1/2025.acl-long.132
%U https://aclanthology.org/2025.acl-long.132/
%U https://doi.org/10.18653/v1/2025.acl-long.132
%P 2623-2641
Markdown (Informal)
[Unraveling the Mechanics of Learning-Based Demonstration Selection for In-Context Learning](https://aclanthology.org/2025.acl-long.132/) (Liu et al., ACL 2025)
ACL