@inproceedings{zhang-etal-2025-weaving,
title = "Weaving Context Across Images: Improving Vision-Language Models through Focus-Centric Visual Chains",
author = "Zhang, Juntian and
Cheng, Chuanqi and
Liu, Yuhan and
Liu, Wei and
Luan, Jian and
Yan, Rui",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.1347/",
doi = "10.18653/v1/2025.acl-long.1347",
pages = "27782--27798",
ISBN = "979-8-89176-251-0",
abstract = "Vision-language models (VLMs) achieve remarkable success in single-image tasks. However, real-world scenarios often involve intricate multi-image inputs, leading to a notable performance decline as models struggle to disentangle critical information scattered across complex visual features. In this work, we propose Focus-Centric Visual Chain, a novel paradigm that enhances VLMs' perception, comprehension, and reasoning abilities in multi-image scenarios. To facilitate this paradigm, we propose Focus-Centric Data Synthesis, a scalable bottom-up approach for synthesizing high-quality data with elaborate reasoning paths. Through this approach, We construct VISC-150K, a large-scale dataset with reasoning data in the form of Focus-Centric Visual Chain, specifically designed for multi-image tasks. Experimental results on seven multi-image benchmarks demonstrate that our method achieves average performance gains of 3.16{\%} and 2.24{\%} across two distinct model architectures, without compromising the general vision-language capabilities. Our study represents a significant step toward more robust and capable vision-language systems that can handle complex visual scenarios."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2025-weaving">
<titleInfo>
<title>Weaving Context Across Images: Improving Vision-Language Models through Focus-Centric Visual Chains</title>
</titleInfo>
<name type="personal">
<namePart type="given">Juntian</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chuanqi</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuhan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Luan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Vision-language models (VLMs) achieve remarkable success in single-image tasks. However, real-world scenarios often involve intricate multi-image inputs, leading to a notable performance decline as models struggle to disentangle critical information scattered across complex visual features. In this work, we propose Focus-Centric Visual Chain, a novel paradigm that enhances VLMs’ perception, comprehension, and reasoning abilities in multi-image scenarios. To facilitate this paradigm, we propose Focus-Centric Data Synthesis, a scalable bottom-up approach for synthesizing high-quality data with elaborate reasoning paths. Through this approach, We construct VISC-150K, a large-scale dataset with reasoning data in the form of Focus-Centric Visual Chain, specifically designed for multi-image tasks. Experimental results on seven multi-image benchmarks demonstrate that our method achieves average performance gains of 3.16% and 2.24% across two distinct model architectures, without compromising the general vision-language capabilities. Our study represents a significant step toward more robust and capable vision-language systems that can handle complex visual scenarios.</abstract>
<identifier type="citekey">zhang-etal-2025-weaving</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.1347</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.1347/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>27782</start>
<end>27798</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Weaving Context Across Images: Improving Vision-Language Models through Focus-Centric Visual Chains
%A Zhang, Juntian
%A Cheng, Chuanqi
%A Liu, Yuhan
%A Liu, Wei
%A Luan, Jian
%A Yan, Rui
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F zhang-etal-2025-weaving
%X Vision-language models (VLMs) achieve remarkable success in single-image tasks. However, real-world scenarios often involve intricate multi-image inputs, leading to a notable performance decline as models struggle to disentangle critical information scattered across complex visual features. In this work, we propose Focus-Centric Visual Chain, a novel paradigm that enhances VLMs’ perception, comprehension, and reasoning abilities in multi-image scenarios. To facilitate this paradigm, we propose Focus-Centric Data Synthesis, a scalable bottom-up approach for synthesizing high-quality data with elaborate reasoning paths. Through this approach, We construct VISC-150K, a large-scale dataset with reasoning data in the form of Focus-Centric Visual Chain, specifically designed for multi-image tasks. Experimental results on seven multi-image benchmarks demonstrate that our method achieves average performance gains of 3.16% and 2.24% across two distinct model architectures, without compromising the general vision-language capabilities. Our study represents a significant step toward more robust and capable vision-language systems that can handle complex visual scenarios.
%R 10.18653/v1/2025.acl-long.1347
%U https://aclanthology.org/2025.acl-long.1347/
%U https://doi.org/10.18653/v1/2025.acl-long.1347
%P 27782-27798
Markdown (Informal)
[Weaving Context Across Images: Improving Vision-Language Models through Focus-Centric Visual Chains](https://aclanthology.org/2025.acl-long.1347/) (Zhang et al., ACL 2025)
ACL