@inproceedings{luo-etal-2025-tree,
title = "Tree-of-Evolution: Tree-Structured Instruction Evolution for Code Generation in Large Language Models",
author = "Luo, Ziyang and
Li, Kaixin and
Lin, Hongzhan and
Tian, Yuchen and
Kankanhalli, Mohan and
Ma, Jing",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.14/",
doi = "10.18653/v1/2025.acl-long.14",
pages = "297--316",
ISBN = "979-8-89176-251-0",
abstract = "Data synthesis has become a crucial research area in large language models (LLMs), especially for generating high-quality instruction fine-tuning data to enhance downstream performance. In code generation, a key application of LLMs, manual annotation of code instruction data is costly. Recent methods, such as Code Evol-Instruct and OSS-Instruct, leverage LLMs to synthesize large-scale code instruction data, significantly improving LLM coding capabilities. However, these approaches face limitations due to unidirectional synthesis and randomness-driven generation, which restrict data quality and diversity. To overcome these challenges, we introduce Tree-of-Evolution (ToE), a novel framework that models code instruction synthesis process with a tree structure, exploring multiple evolutionary paths to alleviate the constraints of unidirectional generation. Additionally, we propose optimization-driven evolution, which refines each generation step based on the quality of the previous iteration. Experimental results across five widely-used coding benchmarks{---}HumanEval, MBPP, EvalPlus, LiveCodeBench, and BigCodeBench{---}demonstrate that base models fine-tuned on just 75k data synthesized by our method achieve comparable or superior performance to the state-of-the-art open-weight Code LLM, Qwen2.5-Coder-Instruct, which was fine-tuned on millions of samples."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luo-etal-2025-tree">
<titleInfo>
<title>Tree-of-Evolution: Tree-Structured Instruction Evolution for Code Generation in Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ziyang</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaixin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongzhan</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuchen</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohan</namePart>
<namePart type="family">Kankanhalli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Data synthesis has become a crucial research area in large language models (LLMs), especially for generating high-quality instruction fine-tuning data to enhance downstream performance. In code generation, a key application of LLMs, manual annotation of code instruction data is costly. Recent methods, such as Code Evol-Instruct and OSS-Instruct, leverage LLMs to synthesize large-scale code instruction data, significantly improving LLM coding capabilities. However, these approaches face limitations due to unidirectional synthesis and randomness-driven generation, which restrict data quality and diversity. To overcome these challenges, we introduce Tree-of-Evolution (ToE), a novel framework that models code instruction synthesis process with a tree structure, exploring multiple evolutionary paths to alleviate the constraints of unidirectional generation. Additionally, we propose optimization-driven evolution, which refines each generation step based on the quality of the previous iteration. Experimental results across five widely-used coding benchmarks—HumanEval, MBPP, EvalPlus, LiveCodeBench, and BigCodeBench—demonstrate that base models fine-tuned on just 75k data synthesized by our method achieve comparable or superior performance to the state-of-the-art open-weight Code LLM, Qwen2.5-Coder-Instruct, which was fine-tuned on millions of samples.</abstract>
<identifier type="citekey">luo-etal-2025-tree</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.14</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.14/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>297</start>
<end>316</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tree-of-Evolution: Tree-Structured Instruction Evolution for Code Generation in Large Language Models
%A Luo, Ziyang
%A Li, Kaixin
%A Lin, Hongzhan
%A Tian, Yuchen
%A Kankanhalli, Mohan
%A Ma, Jing
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F luo-etal-2025-tree
%X Data synthesis has become a crucial research area in large language models (LLMs), especially for generating high-quality instruction fine-tuning data to enhance downstream performance. In code generation, a key application of LLMs, manual annotation of code instruction data is costly. Recent methods, such as Code Evol-Instruct and OSS-Instruct, leverage LLMs to synthesize large-scale code instruction data, significantly improving LLM coding capabilities. However, these approaches face limitations due to unidirectional synthesis and randomness-driven generation, which restrict data quality and diversity. To overcome these challenges, we introduce Tree-of-Evolution (ToE), a novel framework that models code instruction synthesis process with a tree structure, exploring multiple evolutionary paths to alleviate the constraints of unidirectional generation. Additionally, we propose optimization-driven evolution, which refines each generation step based on the quality of the previous iteration. Experimental results across five widely-used coding benchmarks—HumanEval, MBPP, EvalPlus, LiveCodeBench, and BigCodeBench—demonstrate that base models fine-tuned on just 75k data synthesized by our method achieve comparable or superior performance to the state-of-the-art open-weight Code LLM, Qwen2.5-Coder-Instruct, which was fine-tuned on millions of samples.
%R 10.18653/v1/2025.acl-long.14
%U https://aclanthology.org/2025.acl-long.14/
%U https://doi.org/10.18653/v1/2025.acl-long.14
%P 297-316
Markdown (Informal)
[Tree-of-Evolution: Tree-Structured Instruction Evolution for Code Generation in Large Language Models](https://aclanthology.org/2025.acl-long.14/) (Luo et al., ACL 2025)
ACL