@inproceedings{liu-etal-2025-mdcure,
title = "{MDC}ure: A Scalable Pipeline for Multi-Document Instruction-Following",
author = "Liu, Gabrielle Kaili-May and
Shi, Bowen and
Caciularu, Avi and
Szpektor, Idan and
Cohan, Arman",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.1418/",
doi = "10.18653/v1/2025.acl-long.1418",
pages = "29258--29296",
ISBN = "979-8-89176-251-0",
abstract = "Multi-document (MD) processing is crucial for LLMs to handle real-world tasks such as summarization and question-answering across large sets of documents. While LLMs have improved at processing long inputs, MD contexts still present unique difficulties, including management of inter-document dependencies, redundancy, and incoherent structures. To address this challenge, we introduce MDCure, a scalable and effective instruction data generation framework to enhance the MD capabilities of LLMs without the computational cost of pre-training or reliance on human-annotated data. MDCure generates high-quality synthetic MD instruction data over sets of articles via targeted prompts. We also introduce MDCureRM, a cost-effective, MD-specific reward model to score and filter generated data based on their training utility for MD settings. MDCure is compatible with open- and closed-source models in addition to policy optimization methods such as PPO, enabling even small open- source models to surpass proprietary LLMs as strong generators of high-quality MD instruction data without further data filtering. With MDCure, we fine-tune a wide variety of LLMs up to 70B parameters in size from the FlanT5, Qwen2, and LLAMA3.1 model families. Extensive evaluations on a wide range of MD and long-context benchmarks spanning various tasks and domains show MDCure consistently improves performance over pre-trained baselines and base models by up to 75.1{\%}."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-mdcure">
<titleInfo>
<title>MDCure: A Scalable Pipeline for Multi-Document Instruction-Following</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gabrielle</namePart>
<namePart type="given">Kaili-May</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bowen</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avi</namePart>
<namePart type="family">Caciularu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Idan</namePart>
<namePart type="family">Szpektor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arman</namePart>
<namePart type="family">Cohan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Multi-document (MD) processing is crucial for LLMs to handle real-world tasks such as summarization and question-answering across large sets of documents. While LLMs have improved at processing long inputs, MD contexts still present unique difficulties, including management of inter-document dependencies, redundancy, and incoherent structures. To address this challenge, we introduce MDCure, a scalable and effective instruction data generation framework to enhance the MD capabilities of LLMs without the computational cost of pre-training or reliance on human-annotated data. MDCure generates high-quality synthetic MD instruction data over sets of articles via targeted prompts. We also introduce MDCureRM, a cost-effective, MD-specific reward model to score and filter generated data based on their training utility for MD settings. MDCure is compatible with open- and closed-source models in addition to policy optimization methods such as PPO, enabling even small open- source models to surpass proprietary LLMs as strong generators of high-quality MD instruction data without further data filtering. With MDCure, we fine-tune a wide variety of LLMs up to 70B parameters in size from the FlanT5, Qwen2, and LLAMA3.1 model families. Extensive evaluations on a wide range of MD and long-context benchmarks spanning various tasks and domains show MDCure consistently improves performance over pre-trained baselines and base models by up to 75.1%.</abstract>
<identifier type="citekey">liu-etal-2025-mdcure</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.1418</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.1418/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>29258</start>
<end>29296</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MDCure: A Scalable Pipeline for Multi-Document Instruction-Following
%A Liu, Gabrielle Kaili-May
%A Shi, Bowen
%A Caciularu, Avi
%A Szpektor, Idan
%A Cohan, Arman
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F liu-etal-2025-mdcure
%X Multi-document (MD) processing is crucial for LLMs to handle real-world tasks such as summarization and question-answering across large sets of documents. While LLMs have improved at processing long inputs, MD contexts still present unique difficulties, including management of inter-document dependencies, redundancy, and incoherent structures. To address this challenge, we introduce MDCure, a scalable and effective instruction data generation framework to enhance the MD capabilities of LLMs without the computational cost of pre-training or reliance on human-annotated data. MDCure generates high-quality synthetic MD instruction data over sets of articles via targeted prompts. We also introduce MDCureRM, a cost-effective, MD-specific reward model to score and filter generated data based on their training utility for MD settings. MDCure is compatible with open- and closed-source models in addition to policy optimization methods such as PPO, enabling even small open- source models to surpass proprietary LLMs as strong generators of high-quality MD instruction data without further data filtering. With MDCure, we fine-tune a wide variety of LLMs up to 70B parameters in size from the FlanT5, Qwen2, and LLAMA3.1 model families. Extensive evaluations on a wide range of MD and long-context benchmarks spanning various tasks and domains show MDCure consistently improves performance over pre-trained baselines and base models by up to 75.1%.
%R 10.18653/v1/2025.acl-long.1418
%U https://aclanthology.org/2025.acl-long.1418/
%U https://doi.org/10.18653/v1/2025.acl-long.1418
%P 29258-29296
Markdown (Informal)
[MDCure: A Scalable Pipeline for Multi-Document Instruction-Following](https://aclanthology.org/2025.acl-long.1418/) (Liu et al., ACL 2025)
ACL
- Gabrielle Kaili-May Liu, Bowen Shi, Avi Caciularu, Idan Szpektor, and Arman Cohan. 2025. MDCure: A Scalable Pipeline for Multi-Document Instruction-Following. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 29258–29296, Vienna, Austria. Association for Computational Linguistics.