@inproceedings{li-etal-2025-metal,
title = "{METAL}: A Multi-Agent Framework for Chart Generation with Test-Time Scaling",
author = "Li, Bingxuan and
Wang, Yiwei and
Gu, Jiuxiang and
Chang, Kai-Wei and
Peng, Nanyun",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.1452/",
doi = "10.18653/v1/2025.acl-long.1452",
pages = "30054--30069",
ISBN = "979-8-89176-251-0",
abstract = "Chart generation aims to generate code to produce charts satisfying the desired visual properties, e.g., texts, layout, color, and type. It has great potential to empower the automatic professional report generation in financial analysis, research presentation, education, and healthcare. In this work, we build a vision-language model (VLM) based multi-agent framework for effective automatic chart generation. Generating high-quality charts requires both strong visual design skills and precise coding capabilities that embed the desired visual properties into code. Such a complex multi-modal reasoning process is difficult for direct prompting of VLMs. To resolve these challenges, we propose METAL, a multi-agent framework that decomposes the task of chart generation into the iterative collaboration among specialized agents. METAL achieves a 5.2{\%} improvement in the F1 score over the current best result in the chart generation task. Additionally, METAL improves chart generation performance by 11.33{\%} over Direct Prompting with LLaMA-3.2-11B.Furthermore, the METAL framework exhibits the phenomenon of test-time scaling: its performance increases monotonically as the logarithm of computational budget grows from 512 to 8192 tokens."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-metal">
<titleInfo>
<title>METAL: A Multi-Agent Framework for Chart Generation with Test-Time Scaling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bingxuan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiwei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiuxiang</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai-Wei</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nanyun</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Chart generation aims to generate code to produce charts satisfying the desired visual properties, e.g., texts, layout, color, and type. It has great potential to empower the automatic professional report generation in financial analysis, research presentation, education, and healthcare. In this work, we build a vision-language model (VLM) based multi-agent framework for effective automatic chart generation. Generating high-quality charts requires both strong visual design skills and precise coding capabilities that embed the desired visual properties into code. Such a complex multi-modal reasoning process is difficult for direct prompting of VLMs. To resolve these challenges, we propose METAL, a multi-agent framework that decomposes the task of chart generation into the iterative collaboration among specialized agents. METAL achieves a 5.2% improvement in the F1 score over the current best result in the chart generation task. Additionally, METAL improves chart generation performance by 11.33% over Direct Prompting with LLaMA-3.2-11B.Furthermore, the METAL framework exhibits the phenomenon of test-time scaling: its performance increases monotonically as the logarithm of computational budget grows from 512 to 8192 tokens.</abstract>
<identifier type="citekey">li-etal-2025-metal</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.1452</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.1452/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>30054</start>
<end>30069</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T METAL: A Multi-Agent Framework for Chart Generation with Test-Time Scaling
%A Li, Bingxuan
%A Wang, Yiwei
%A Gu, Jiuxiang
%A Chang, Kai-Wei
%A Peng, Nanyun
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F li-etal-2025-metal
%X Chart generation aims to generate code to produce charts satisfying the desired visual properties, e.g., texts, layout, color, and type. It has great potential to empower the automatic professional report generation in financial analysis, research presentation, education, and healthcare. In this work, we build a vision-language model (VLM) based multi-agent framework for effective automatic chart generation. Generating high-quality charts requires both strong visual design skills and precise coding capabilities that embed the desired visual properties into code. Such a complex multi-modal reasoning process is difficult for direct prompting of VLMs. To resolve these challenges, we propose METAL, a multi-agent framework that decomposes the task of chart generation into the iterative collaboration among specialized agents. METAL achieves a 5.2% improvement in the F1 score over the current best result in the chart generation task. Additionally, METAL improves chart generation performance by 11.33% over Direct Prompting with LLaMA-3.2-11B.Furthermore, the METAL framework exhibits the phenomenon of test-time scaling: its performance increases monotonically as the logarithm of computational budget grows from 512 to 8192 tokens.
%R 10.18653/v1/2025.acl-long.1452
%U https://aclanthology.org/2025.acl-long.1452/
%U https://doi.org/10.18653/v1/2025.acl-long.1452
%P 30054-30069
Markdown (Informal)
[METAL: A Multi-Agent Framework for Chart Generation with Test-Time Scaling](https://aclanthology.org/2025.acl-long.1452/) (Li et al., ACL 2025)
ACL