@inproceedings{douglas-etal-2025-less,
title = "Less is More: Explainable and Efficient {ICD} Code Prediction with Clinical Entities",
author = "Douglas, James C. and
Gan, Yidong and
Hachey, Ben and
Kummerfeld, Jonathan K.",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.1489/",
doi = "10.18653/v1/2025.acl-long.1489",
pages = "30835--30847",
ISBN = "979-8-89176-251-0",
abstract = "Clinical coding, assigning standardized codes to medical notes, is critical for epidemiological research, hospital planning, and reimbursement. Neural coding models generally process entire discharge summaries, which are often lengthy and contain information that is not relevant to coding. We propose an approach that combines Named Entity Recognition (NER) and Assertion Classification (AC) to filter for clinically important content before supervised code prediction. On MIMIC-IV, a standard evaluation dataset, our approach achieves near-equivalent performance to a state-of-the-art full-text baseline while using only 22{\%} of the content and reducing training time by over half. Additionally, mapping model attention to complete entity spans yields coherent, clinically meaningful explanations, capturing coding-relevant modifiers such as acuity and laterality. We release a newly annotated NER+AC dataset for MIMIC-IV, designed specifically for ICD coding. Our entity-centric approach lays a foundation for more transparent and cost-effective assisted coding."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="douglas-etal-2025-less">
<titleInfo>
<title>Less is More: Explainable and Efficient ICD Code Prediction with Clinical Entities</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Douglas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yidong</namePart>
<namePart type="family">Gan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ben</namePart>
<namePart type="family">Hachey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="given">K</namePart>
<namePart type="family">Kummerfeld</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Clinical coding, assigning standardized codes to medical notes, is critical for epidemiological research, hospital planning, and reimbursement. Neural coding models generally process entire discharge summaries, which are often lengthy and contain information that is not relevant to coding. We propose an approach that combines Named Entity Recognition (NER) and Assertion Classification (AC) to filter for clinically important content before supervised code prediction. On MIMIC-IV, a standard evaluation dataset, our approach achieves near-equivalent performance to a state-of-the-art full-text baseline while using only 22% of the content and reducing training time by over half. Additionally, mapping model attention to complete entity spans yields coherent, clinically meaningful explanations, capturing coding-relevant modifiers such as acuity and laterality. We release a newly annotated NER+AC dataset for MIMIC-IV, designed specifically for ICD coding. Our entity-centric approach lays a foundation for more transparent and cost-effective assisted coding.</abstract>
<identifier type="citekey">douglas-etal-2025-less</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.1489</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.1489/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>30835</start>
<end>30847</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Less is More: Explainable and Efficient ICD Code Prediction with Clinical Entities
%A Douglas, James C.
%A Gan, Yidong
%A Hachey, Ben
%A Kummerfeld, Jonathan K.
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F douglas-etal-2025-less
%X Clinical coding, assigning standardized codes to medical notes, is critical for epidemiological research, hospital planning, and reimbursement. Neural coding models generally process entire discharge summaries, which are often lengthy and contain information that is not relevant to coding. We propose an approach that combines Named Entity Recognition (NER) and Assertion Classification (AC) to filter for clinically important content before supervised code prediction. On MIMIC-IV, a standard evaluation dataset, our approach achieves near-equivalent performance to a state-of-the-art full-text baseline while using only 22% of the content and reducing training time by over half. Additionally, mapping model attention to complete entity spans yields coherent, clinically meaningful explanations, capturing coding-relevant modifiers such as acuity and laterality. We release a newly annotated NER+AC dataset for MIMIC-IV, designed specifically for ICD coding. Our entity-centric approach lays a foundation for more transparent and cost-effective assisted coding.
%R 10.18653/v1/2025.acl-long.1489
%U https://aclanthology.org/2025.acl-long.1489/
%U https://doi.org/10.18653/v1/2025.acl-long.1489
%P 30835-30847
Markdown (Informal)
[Less is More: Explainable and Efficient ICD Code Prediction with Clinical Entities](https://aclanthology.org/2025.acl-long.1489/) (Douglas et al., ACL 2025)
ACL