@inproceedings{sheng-etal-2025-dynamic,
title = "Dynamic Chunking and Selection for Reading Comprehension of Ultra-Long Context in Large Language Models",
author = "Sheng, Boheng and
Yao, Jiacheng and
Zhang, Meicong and
He, Guoxiu",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.1538/",
doi = "10.18653/v1/2025.acl-long.1538",
pages = "31857--31876",
ISBN = "979-8-89176-251-0",
abstract = "Large language models (LLMs) often struggle to accurately read and comprehend extremely long texts. Current methods for improvement typically rely on splitting long contexts into fixed-length chunks. However, fixed truncation risks separating semantically relevant content, leading to ambiguity and compromising accurate understanding. To overcome this limitation, we propose a straightforward approach for dynamically separating and selecting chunks of long context, facilitating a more streamlined input for LLMs. In particular, we compute semantic similarities between adjacent sentences, using lower similarities to adaptively divide long contexts into variable-length chunks. We further train a question-aware classifier to select sensitive chunks that are critical for answering specific questions. Experimental results on both single-hop and multi-hop question-answering benchmarks show that the proposed approach consistently outperforms strong baselines. Notably, it maintains robustness across a wide range of input lengths, handling sequences of up to 256k tokens. Our datasets and code are available at the following link: https://github.com/ECNU-Text-Computing/DCS"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sheng-etal-2025-dynamic">
<titleInfo>
<title>Dynamic Chunking and Selection for Reading Comprehension of Ultra-Long Context in Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Boheng</namePart>
<namePart type="family">Sheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiacheng</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meicong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guoxiu</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Large language models (LLMs) often struggle to accurately read and comprehend extremely long texts. Current methods for improvement typically rely on splitting long contexts into fixed-length chunks. However, fixed truncation risks separating semantically relevant content, leading to ambiguity and compromising accurate understanding. To overcome this limitation, we propose a straightforward approach for dynamically separating and selecting chunks of long context, facilitating a more streamlined input for LLMs. In particular, we compute semantic similarities between adjacent sentences, using lower similarities to adaptively divide long contexts into variable-length chunks. We further train a question-aware classifier to select sensitive chunks that are critical for answering specific questions. Experimental results on both single-hop and multi-hop question-answering benchmarks show that the proposed approach consistently outperforms strong baselines. Notably, it maintains robustness across a wide range of input lengths, handling sequences of up to 256k tokens. Our datasets and code are available at the following link: https://github.com/ECNU-Text-Computing/DCS</abstract>
<identifier type="citekey">sheng-etal-2025-dynamic</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.1538</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.1538/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>31857</start>
<end>31876</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dynamic Chunking and Selection for Reading Comprehension of Ultra-Long Context in Large Language Models
%A Sheng, Boheng
%A Yao, Jiacheng
%A Zhang, Meicong
%A He, Guoxiu
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F sheng-etal-2025-dynamic
%X Large language models (LLMs) often struggle to accurately read and comprehend extremely long texts. Current methods for improvement typically rely on splitting long contexts into fixed-length chunks. However, fixed truncation risks separating semantically relevant content, leading to ambiguity and compromising accurate understanding. To overcome this limitation, we propose a straightforward approach for dynamically separating and selecting chunks of long context, facilitating a more streamlined input for LLMs. In particular, we compute semantic similarities between adjacent sentences, using lower similarities to adaptively divide long contexts into variable-length chunks. We further train a question-aware classifier to select sensitive chunks that are critical for answering specific questions. Experimental results on both single-hop and multi-hop question-answering benchmarks show that the proposed approach consistently outperforms strong baselines. Notably, it maintains robustness across a wide range of input lengths, handling sequences of up to 256k tokens. Our datasets and code are available at the following link: https://github.com/ECNU-Text-Computing/DCS
%R 10.18653/v1/2025.acl-long.1538
%U https://aclanthology.org/2025.acl-long.1538/
%U https://doi.org/10.18653/v1/2025.acl-long.1538
%P 31857-31876
Markdown (Informal)
[Dynamic Chunking and Selection for Reading Comprehension of Ultra-Long Context in Large Language Models](https://aclanthology.org/2025.acl-long.1538/) (Sheng et al., ACL 2025)
ACL