@inproceedings{park-etal-2025-helios,
title = "{HELIOS}: Harmonizing Early Fusion, Late Fusion, and {LLM} Reasoning for Multi-Granular Table-Text Retrieval",
author = "Park, Sungho and
Yun, Joohyung and
Lee, Jongwuk and
Han, Wook-Shin",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.1559/",
doi = "10.18653/v1/2025.acl-long.1559",
pages = "32424--32444",
ISBN = "979-8-89176-251-0",
abstract = "Table-text retrieval aims to retrieve relevant tables and text to support open-domain question answering. Existing studies use either early or late fusion, but face limitations. Early fusion pre-aligns a table row with its associated passages, forming ``stars,'' which often include irrelevant contexts and miss query-dependent relationships. Late fusion retrieves individual nodes, dynamically aligning them, but it risks missing relevant contexts. Both approaches also struggle with advanced reasoning tasks, such as column-wise aggregation and multi-hop reasoning. To address these issues, we propose HELIOS, which combines the strengths of both approaches. First, the edge-based bipartite subgraph retrieval identifies finer-grained edges between table segments and passages, effectively avoiding the inclusion of irrelevant contexts. Then, the query-relevant node expansion identifies the most promising nodes, dynamically retrieving relevant edges to grow the bipartite subgraph, minimizing the risk of missing important contexts. Lastly, the star-based LLM refinement performs logical inference at the star graph level rather than the bipartite subgraph, supporting advanced reasoning tasks. Experimental results show that HELIOS outperforms state-of-the-art models with a significant improvement up to 42.6{\%} and 39.9{\%} in recall and nDCG, respectively, on the OTT-QA benchmark."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="park-etal-2025-helios">
<titleInfo>
<title>HELIOS: Harmonizing Early Fusion, Late Fusion, and LLM Reasoning for Multi-Granular Table-Text Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sungho</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joohyung</namePart>
<namePart type="family">Yun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jongwuk</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wook-Shin</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Table-text retrieval aims to retrieve relevant tables and text to support open-domain question answering. Existing studies use either early or late fusion, but face limitations. Early fusion pre-aligns a table row with its associated passages, forming “stars,” which often include irrelevant contexts and miss query-dependent relationships. Late fusion retrieves individual nodes, dynamically aligning them, but it risks missing relevant contexts. Both approaches also struggle with advanced reasoning tasks, such as column-wise aggregation and multi-hop reasoning. To address these issues, we propose HELIOS, which combines the strengths of both approaches. First, the edge-based bipartite subgraph retrieval identifies finer-grained edges between table segments and passages, effectively avoiding the inclusion of irrelevant contexts. Then, the query-relevant node expansion identifies the most promising nodes, dynamically retrieving relevant edges to grow the bipartite subgraph, minimizing the risk of missing important contexts. Lastly, the star-based LLM refinement performs logical inference at the star graph level rather than the bipartite subgraph, supporting advanced reasoning tasks. Experimental results show that HELIOS outperforms state-of-the-art models with a significant improvement up to 42.6% and 39.9% in recall and nDCG, respectively, on the OTT-QA benchmark.</abstract>
<identifier type="citekey">park-etal-2025-helios</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.1559</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.1559/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>32424</start>
<end>32444</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HELIOS: Harmonizing Early Fusion, Late Fusion, and LLM Reasoning for Multi-Granular Table-Text Retrieval
%A Park, Sungho
%A Yun, Joohyung
%A Lee, Jongwuk
%A Han, Wook-Shin
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F park-etal-2025-helios
%X Table-text retrieval aims to retrieve relevant tables and text to support open-domain question answering. Existing studies use either early or late fusion, but face limitations. Early fusion pre-aligns a table row with its associated passages, forming “stars,” which often include irrelevant contexts and miss query-dependent relationships. Late fusion retrieves individual nodes, dynamically aligning them, but it risks missing relevant contexts. Both approaches also struggle with advanced reasoning tasks, such as column-wise aggregation and multi-hop reasoning. To address these issues, we propose HELIOS, which combines the strengths of both approaches. First, the edge-based bipartite subgraph retrieval identifies finer-grained edges between table segments and passages, effectively avoiding the inclusion of irrelevant contexts. Then, the query-relevant node expansion identifies the most promising nodes, dynamically retrieving relevant edges to grow the bipartite subgraph, minimizing the risk of missing important contexts. Lastly, the star-based LLM refinement performs logical inference at the star graph level rather than the bipartite subgraph, supporting advanced reasoning tasks. Experimental results show that HELIOS outperforms state-of-the-art models with a significant improvement up to 42.6% and 39.9% in recall and nDCG, respectively, on the OTT-QA benchmark.
%R 10.18653/v1/2025.acl-long.1559
%U https://aclanthology.org/2025.acl-long.1559/
%U https://doi.org/10.18653/v1/2025.acl-long.1559
%P 32424-32444
Markdown (Informal)
[HELIOS: Harmonizing Early Fusion, Late Fusion, and LLM Reasoning for Multi-Granular Table-Text Retrieval](https://aclanthology.org/2025.acl-long.1559/) (Park et al., ACL 2025)
ACL