@inproceedings{fosse-etal-2025-statistical,
title = "Statistical Deficiency for Task Inclusion Estimation",
author = {Fosse, Lo{\"i}c and
Bechet, Frederic and
Favre, Benoit and
Damnati, G{\'e}raldine and
Lecorv{\'e}, Gw{\'e}nol{\'e} and
Darrin, Maxime and
Formont, Philippe and
Piantanida, Pablo},
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.18/",
doi = "10.18653/v1/2025.acl-long.18",
pages = "382--415",
ISBN = "979-8-89176-251-0",
abstract = "Tasks are central in machine learning, as they are the most natural objects to assess the capabilities of current models. The trend is to build general models able to address any task. Even though transfer learning and multitask learning try to leverage the underlying task space, no well-founded tools are available to study its structure. This study proposes a theoretically grounded setup to define the notion of task and to compute the inclusion between two tasks from a statistical deficiency point of view. We propose a tractable proxy as information sufficiency to estimate the degree of inclusion between tasks, show its soundness on synthetic data, and use it to reconstruct empirically the classic NLP pipeline."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fosse-etal-2025-statistical">
<titleInfo>
<title>Statistical Deficiency for Task Inclusion Estimation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Loïc</namePart>
<namePart type="family">Fosse</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederic</namePart>
<namePart type="family">Bechet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benoit</namePart>
<namePart type="family">Favre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Géraldine</namePart>
<namePart type="family">Damnati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gwénolé</namePart>
<namePart type="family">Lecorvé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maxime</namePart>
<namePart type="family">Darrin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Formont</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pablo</namePart>
<namePart type="family">Piantanida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Tasks are central in machine learning, as they are the most natural objects to assess the capabilities of current models. The trend is to build general models able to address any task. Even though transfer learning and multitask learning try to leverage the underlying task space, no well-founded tools are available to study its structure. This study proposes a theoretically grounded setup to define the notion of task and to compute the inclusion between two tasks from a statistical deficiency point of view. We propose a tractable proxy as information sufficiency to estimate the degree of inclusion between tasks, show its soundness on synthetic data, and use it to reconstruct empirically the classic NLP pipeline.</abstract>
<identifier type="citekey">fosse-etal-2025-statistical</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.18</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.18/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>382</start>
<end>415</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Statistical Deficiency for Task Inclusion Estimation
%A Fosse, Loïc
%A Bechet, Frederic
%A Favre, Benoit
%A Damnati, Géraldine
%A Lecorvé, Gwénolé
%A Darrin, Maxime
%A Formont, Philippe
%A Piantanida, Pablo
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F fosse-etal-2025-statistical
%X Tasks are central in machine learning, as they are the most natural objects to assess the capabilities of current models. The trend is to build general models able to address any task. Even though transfer learning and multitask learning try to leverage the underlying task space, no well-founded tools are available to study its structure. This study proposes a theoretically grounded setup to define the notion of task and to compute the inclusion between two tasks from a statistical deficiency point of view. We propose a tractable proxy as information sufficiency to estimate the degree of inclusion between tasks, show its soundness on synthetic data, and use it to reconstruct empirically the classic NLP pipeline.
%R 10.18653/v1/2025.acl-long.18
%U https://aclanthology.org/2025.acl-long.18/
%U https://doi.org/10.18653/v1/2025.acl-long.18
%P 382-415
Markdown (Informal)
[Statistical Deficiency for Task Inclusion Estimation](https://aclanthology.org/2025.acl-long.18/) (Fosse et al., ACL 2025)
ACL
- Loïc Fosse, Frederic Bechet, Benoit Favre, Géraldine Damnati, Gwénolé Lecorvé, Maxime Darrin, Philippe Formont, and Pablo Piantanida. 2025. Statistical Deficiency for Task Inclusion Estimation. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 382–415, Vienna, Austria. Association for Computational Linguistics.