@inproceedings{gao-etal-2025-llms,
title = "Can {LLM}s Simulate {L}2-{E}nglish Dialogue? An Information-Theoretic Analysis of {L}1-Dependent Biases",
author = "Gao, Rena and
Wu, Xuetong and
Kuribayashi, Tatsuki and
Ye, Mingrui and
Qi, Siya and
Roever, Carsten and
Liu, Yuanxing and
Yuan, Zheng and
Lau, Jey Han",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.219/",
doi = "10.18653/v1/2025.acl-long.219",
pages = "4355--4379",
ISBN = "979-8-89176-251-0",
abstract = "This study evaluates Large Language Models' (LLMs) ability to simulate non-native-like English use observed in human second language (L2) learners interfered with by their native first language (L1). In dialogue-based interviews, we prompt LLMs to mimic L2 English learners with specific L1s (e.g., Japanese, Thai, Urdu) across seven languages, comparing their outputs to real L2 learner data. Our analysis examines L1-driven linguistic biases, such as reference word usage and avoidance behaviors, using information-theoretic and distributional density measures. Results show that modern LLMs (e.g., Qwen2.5, LLAMA3, DeepseekV3, GPT 4o) replicate L1-dependent patterns observed in human L2 data, with distinct influences from various languages (e.g., Japanese, Korean, and Mandarin significantly affect tense agreement, and Urdu influences noun-verb collocations). Our results reveal LLMs' potential for L2 dialogue generation and evaluation for future educational applications."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gao-etal-2025-llms">
<titleInfo>
<title>Can LLMs Simulate L2-English Dialogue? An Information-Theoretic Analysis of L1-Dependent Biases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rena</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuetong</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatsuki</namePart>
<namePart type="family">Kuribayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingrui</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siya</namePart>
<namePart type="family">Qi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carsten</namePart>
<namePart type="family">Roever</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanxing</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jey</namePart>
<namePart type="given">Han</namePart>
<namePart type="family">Lau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>This study evaluates Large Language Models’ (LLMs) ability to simulate non-native-like English use observed in human second language (L2) learners interfered with by their native first language (L1). In dialogue-based interviews, we prompt LLMs to mimic L2 English learners with specific L1s (e.g., Japanese, Thai, Urdu) across seven languages, comparing their outputs to real L2 learner data. Our analysis examines L1-driven linguistic biases, such as reference word usage and avoidance behaviors, using information-theoretic and distributional density measures. Results show that modern LLMs (e.g., Qwen2.5, LLAMA3, DeepseekV3, GPT 4o) replicate L1-dependent patterns observed in human L2 data, with distinct influences from various languages (e.g., Japanese, Korean, and Mandarin significantly affect tense agreement, and Urdu influences noun-verb collocations). Our results reveal LLMs’ potential for L2 dialogue generation and evaluation for future educational applications.</abstract>
<identifier type="citekey">gao-etal-2025-llms</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.219</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.219/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>4355</start>
<end>4379</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can LLMs Simulate L2-English Dialogue? An Information-Theoretic Analysis of L1-Dependent Biases
%A Gao, Rena
%A Wu, Xuetong
%A Kuribayashi, Tatsuki
%A Ye, Mingrui
%A Qi, Siya
%A Roever, Carsten
%A Liu, Yuanxing
%A Yuan, Zheng
%A Lau, Jey Han
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F gao-etal-2025-llms
%X This study evaluates Large Language Models’ (LLMs) ability to simulate non-native-like English use observed in human second language (L2) learners interfered with by their native first language (L1). In dialogue-based interviews, we prompt LLMs to mimic L2 English learners with specific L1s (e.g., Japanese, Thai, Urdu) across seven languages, comparing their outputs to real L2 learner data. Our analysis examines L1-driven linguistic biases, such as reference word usage and avoidance behaviors, using information-theoretic and distributional density measures. Results show that modern LLMs (e.g., Qwen2.5, LLAMA3, DeepseekV3, GPT 4o) replicate L1-dependent patterns observed in human L2 data, with distinct influences from various languages (e.g., Japanese, Korean, and Mandarin significantly affect tense agreement, and Urdu influences noun-verb collocations). Our results reveal LLMs’ potential for L2 dialogue generation and evaluation for future educational applications.
%R 10.18653/v1/2025.acl-long.219
%U https://aclanthology.org/2025.acl-long.219/
%U https://doi.org/10.18653/v1/2025.acl-long.219
%P 4355-4379
Markdown (Informal)
[Can LLMs Simulate L2-English Dialogue? An Information-Theoretic Analysis of L1-Dependent Biases](https://aclanthology.org/2025.acl-long.219/) (Gao et al., ACL 2025)
ACL
- Rena Gao, Xuetong Wu, Tatsuki Kuribayashi, Mingrui Ye, Siya Qi, Carsten Roever, Yuanxing Liu, Zheng Yuan, and Jey Han Lau. 2025. Can LLMs Simulate L2-English Dialogue? An Information-Theoretic Analysis of L1-Dependent Biases. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4355–4379, Vienna, Austria. Association for Computational Linguistics.