@inproceedings{pedrotti-etal-2025-humans,
title = "How Humans and {LLM}s Organize Conceptual Knowledge: Exploring Subordinate Categories in {I}talian",
author = "Pedrotti, Andrea and
Rambelli, Giulia and
Villani, Caterina and
Bolognesi, Marianna",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.224/",
doi = "10.18653/v1/2025.acl-long.224",
pages = "4464--4482",
ISBN = "979-8-89176-251-0",
abstract = "People can categorize the same entity at multiple taxonomic levels, such as basic (bear), superordinate (animal), and subordinate (grizzly bear). While prior research has focused on basic-level categories, this study is the first attempt to examine the organization of categories by analyzing exemplars produced at the subordinate level. We present a new Italian psycholinguistic dataset of human-generated exemplars for 187 concrete words. We then leverage these data to evaluate whether textual and vision LLMs produce meaningful exemplars that align with human category organization across three key tasks: exemplar generation, category induction, and typicality judgment. Our findings show a low alignment between humans and LLMs, consistent with previous studies. However, their performance varies notably across different semantic domains. Ultimately, this study highlights both the promises and the constraints of using AI-generated exemplars to support psychological and linguistic research."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pedrotti-etal-2025-humans">
<titleInfo>
<title>How Humans and LLMs Organize Conceptual Knowledge: Exploring Subordinate Categories in Italian</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Pedrotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giulia</namePart>
<namePart type="family">Rambelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caterina</namePart>
<namePart type="family">Villani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Bolognesi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>People can categorize the same entity at multiple taxonomic levels, such as basic (bear), superordinate (animal), and subordinate (grizzly bear). While prior research has focused on basic-level categories, this study is the first attempt to examine the organization of categories by analyzing exemplars produced at the subordinate level. We present a new Italian psycholinguistic dataset of human-generated exemplars for 187 concrete words. We then leverage these data to evaluate whether textual and vision LLMs produce meaningful exemplars that align with human category organization across three key tasks: exemplar generation, category induction, and typicality judgment. Our findings show a low alignment between humans and LLMs, consistent with previous studies. However, their performance varies notably across different semantic domains. Ultimately, this study highlights both the promises and the constraints of using AI-generated exemplars to support psychological and linguistic research.</abstract>
<identifier type="citekey">pedrotti-etal-2025-humans</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.224</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.224/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>4464</start>
<end>4482</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T How Humans and LLMs Organize Conceptual Knowledge: Exploring Subordinate Categories in Italian
%A Pedrotti, Andrea
%A Rambelli, Giulia
%A Villani, Caterina
%A Bolognesi, Marianna
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F pedrotti-etal-2025-humans
%X People can categorize the same entity at multiple taxonomic levels, such as basic (bear), superordinate (animal), and subordinate (grizzly bear). While prior research has focused on basic-level categories, this study is the first attempt to examine the organization of categories by analyzing exemplars produced at the subordinate level. We present a new Italian psycholinguistic dataset of human-generated exemplars for 187 concrete words. We then leverage these data to evaluate whether textual and vision LLMs produce meaningful exemplars that align with human category organization across three key tasks: exemplar generation, category induction, and typicality judgment. Our findings show a low alignment between humans and LLMs, consistent with previous studies. However, their performance varies notably across different semantic domains. Ultimately, this study highlights both the promises and the constraints of using AI-generated exemplars to support psychological and linguistic research.
%R 10.18653/v1/2025.acl-long.224
%U https://aclanthology.org/2025.acl-long.224/
%U https://doi.org/10.18653/v1/2025.acl-long.224
%P 4464-4482
Markdown (Informal)
[How Humans and LLMs Organize Conceptual Knowledge: Exploring Subordinate Categories in Italian](https://aclanthology.org/2025.acl-long.224/) (Pedrotti et al., ACL 2025)
ACL