@inproceedings{meng-etal-2025-stigma,
title = "What is Stigma Attributed to? A Theory-Grounded, Expert-Annotated Interview Corpus for Demystifying Mental-Health Stigma",
author = "Meng, Han and
Chen, Yancan and
Li, Yunan and
Yang, Yitian and
Lee, Jungup and
Zhang, Renwen and
Lee, Yi-Chieh",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.272/",
doi = "10.18653/v1/2025.acl-long.272",
pages = "5453--5490",
ISBN = "979-8-89176-251-0",
abstract = "Mental-health stigma remains a pervasive social problem that hampers treatment-seeking and recovery. Existing resources for training neural models to finely classify such stigma are limited, relying primarily on social-media or synthetic data without theoretical underpinnings. To remedy this gap, we present an expert-annotated, theory-informed corpus of human-chatbot interviews, comprising 4,141 snippets from 684 participants with documented socio-cultural backgrounds. Our experiments benchmark state-of-the-art neural models and empirically unpack the challenges of stigma detection. This dataset can facilitate research on computationally detecting, neutralizing, and counteracting mental-health stigma. Our corpus is openly available at https://github.com/HanMeng2004/Mental-Health-Stigma-Interview-Corpus."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="meng-etal-2025-stigma">
<titleInfo>
<title>What is Stigma Attributed to? A Theory-Grounded, Expert-Annotated Interview Corpus for Demystifying Mental-Health Stigma</title>
</titleInfo>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yancan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yitian</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jungup</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Renwen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi-Chieh</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Mental-health stigma remains a pervasive social problem that hampers treatment-seeking and recovery. Existing resources for training neural models to finely classify such stigma are limited, relying primarily on social-media or synthetic data without theoretical underpinnings. To remedy this gap, we present an expert-annotated, theory-informed corpus of human-chatbot interviews, comprising 4,141 snippets from 684 participants with documented socio-cultural backgrounds. Our experiments benchmark state-of-the-art neural models and empirically unpack the challenges of stigma detection. This dataset can facilitate research on computationally detecting, neutralizing, and counteracting mental-health stigma. Our corpus is openly available at https://github.com/HanMeng2004/Mental-Health-Stigma-Interview-Corpus.</abstract>
<identifier type="citekey">meng-etal-2025-stigma</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.272</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.272/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>5453</start>
<end>5490</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What is Stigma Attributed to? A Theory-Grounded, Expert-Annotated Interview Corpus for Demystifying Mental-Health Stigma
%A Meng, Han
%A Chen, Yancan
%A Li, Yunan
%A Yang, Yitian
%A Lee, Jungup
%A Zhang, Renwen
%A Lee, Yi-Chieh
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F meng-etal-2025-stigma
%X Mental-health stigma remains a pervasive social problem that hampers treatment-seeking and recovery. Existing resources for training neural models to finely classify such stigma are limited, relying primarily on social-media or synthetic data without theoretical underpinnings. To remedy this gap, we present an expert-annotated, theory-informed corpus of human-chatbot interviews, comprising 4,141 snippets from 684 participants with documented socio-cultural backgrounds. Our experiments benchmark state-of-the-art neural models and empirically unpack the challenges of stigma detection. This dataset can facilitate research on computationally detecting, neutralizing, and counteracting mental-health stigma. Our corpus is openly available at https://github.com/HanMeng2004/Mental-Health-Stigma-Interview-Corpus.
%R 10.18653/v1/2025.acl-long.272
%U https://aclanthology.org/2025.acl-long.272/
%U https://doi.org/10.18653/v1/2025.acl-long.272
%P 5453-5490
Markdown (Informal)
[What is Stigma Attributed to? A Theory-Grounded, Expert-Annotated Interview Corpus for Demystifying Mental-Health Stigma](https://aclanthology.org/2025.acl-long.272/) (Meng et al., ACL 2025)
ACL
- Han Meng, Yancan Chen, Yunan Li, Yitian Yang, Jungup Lee, Renwen Zhang, and Yi-Chieh Lee. 2025. What is Stigma Attributed to? A Theory-Grounded, Expert-Annotated Interview Corpus for Demystifying Mental-Health Stigma. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5453–5490, Vienna, Austria. Association for Computational Linguistics.