@inproceedings{huang-wu-2025-quaff,
title = "Quaff: Quantized Parameter-Efficient Fine-Tuning under Outlier Spatial Stability Hypothesis",
author = "Huang, Hong and
Wu, Dapeng",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.325/",
doi = "10.18653/v1/2025.acl-long.325",
pages = "6481--6496",
ISBN = "979-8-89176-251-0",
abstract = "Large language models (LLMs) have made exciting achievements across various domains, yet their deployment on resource-constrained personal devices remains hindered by the prohibitive computational and memory demands of task-specific fine-tuning. While quantization offers a pathway to efficiency, existing methods struggle to balance performance and overhead, either incurring high computational/memory costs or failing to address activation outliers{---}a critical bottleneck in quantized fine-tuning. To address these challenges, we propose the Outlier Spatial Stability Hypothesis ({\_}{\_}OSSH{\_}{\_}): {\_}During fine-tuning, certain activation outlier channels retain stable spatial positions across training iterations.{\_} Building on OSSH, we propose {\_}{\_}Quaff{\_}{\_}, a Quantized parameter-efficient fine-tuning framework for LLMs, optimizing low-precision activation representations through targeted momentum scaling. Quaff dynamically suppresses outliers exclusively in invariant channels using lightweight operations, eliminating full-precision weight storage and global rescaling while reducing quantization errors. Extensive experiments across ten benchmarks validate OSSH and demonstrate Quaff{'}s efficacy. Specifically, on the GPQA reasoning benchmark, Quaff achieves a $1.73\times$ latency reduction and 30{\%} memory savings over full-precision fine-tuning while improving accuracy by 0.6{\%} on the Phi-3 model, reconciling the triple trade-off between efficiency, performance, and deployability. By enabling consumer-grade GPU fine-tuning (e.g., RTX 2080 Super) without sacrificing model utility, Quaff democratizes personalized LLM deployment. The code is available at https://anonymous.4open.science/r/Quaff-B322/."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-wu-2025-quaff">
<titleInfo>
<title>Quaff: Quantized Parameter-Efficient Fine-Tuning under Outlier Spatial Stability Hypothesis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hong</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dapeng</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Large language models (LLMs) have made exciting achievements across various domains, yet their deployment on resource-constrained personal devices remains hindered by the prohibitive computational and memory demands of task-specific fine-tuning. While quantization offers a pathway to efficiency, existing methods struggle to balance performance and overhead, either incurring high computational/memory costs or failing to address activation outliers—a critical bottleneck in quantized fine-tuning. To address these challenges, we propose the Outlier Spatial Stability Hypothesis (__OSSH__): _During fine-tuning, certain activation outlier channels retain stable spatial positions across training iterations._ Building on OSSH, we propose __Quaff__, a Quantized parameter-efficient fine-tuning framework for LLMs, optimizing low-precision activation representations through targeted momentum scaling. Quaff dynamically suppresses outliers exclusively in invariant channels using lightweight operations, eliminating full-precision weight storage and global rescaling while reducing quantization errors. Extensive experiments across ten benchmarks validate OSSH and demonstrate Quaff’s efficacy. Specifically, on the GPQA reasoning benchmark, Quaff achieves a 1.73\times latency reduction and 30% memory savings over full-precision fine-tuning while improving accuracy by 0.6% on the Phi-3 model, reconciling the triple trade-off between efficiency, performance, and deployability. By enabling consumer-grade GPU fine-tuning (e.g., RTX 2080 Super) without sacrificing model utility, Quaff democratizes personalized LLM deployment. The code is available at https://anonymous.4open.science/r/Quaff-B322/.</abstract>
<identifier type="citekey">huang-wu-2025-quaff</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.325</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.325/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>6481</start>
<end>6496</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Quaff: Quantized Parameter-Efficient Fine-Tuning under Outlier Spatial Stability Hypothesis
%A Huang, Hong
%A Wu, Dapeng
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F huang-wu-2025-quaff
%X Large language models (LLMs) have made exciting achievements across various domains, yet their deployment on resource-constrained personal devices remains hindered by the prohibitive computational and memory demands of task-specific fine-tuning. While quantization offers a pathway to efficiency, existing methods struggle to balance performance and overhead, either incurring high computational/memory costs or failing to address activation outliers—a critical bottleneck in quantized fine-tuning. To address these challenges, we propose the Outlier Spatial Stability Hypothesis (__OSSH__): _During fine-tuning, certain activation outlier channels retain stable spatial positions across training iterations._ Building on OSSH, we propose __Quaff__, a Quantized parameter-efficient fine-tuning framework for LLMs, optimizing low-precision activation representations through targeted momentum scaling. Quaff dynamically suppresses outliers exclusively in invariant channels using lightweight operations, eliminating full-precision weight storage and global rescaling while reducing quantization errors. Extensive experiments across ten benchmarks validate OSSH and demonstrate Quaff’s efficacy. Specifically, on the GPQA reasoning benchmark, Quaff achieves a 1.73\times latency reduction and 30% memory savings over full-precision fine-tuning while improving accuracy by 0.6% on the Phi-3 model, reconciling the triple trade-off between efficiency, performance, and deployability. By enabling consumer-grade GPU fine-tuning (e.g., RTX 2080 Super) without sacrificing model utility, Quaff democratizes personalized LLM deployment. The code is available at https://anonymous.4open.science/r/Quaff-B322/.
%R 10.18653/v1/2025.acl-long.325
%U https://aclanthology.org/2025.acl-long.325/
%U https://doi.org/10.18653/v1/2025.acl-long.325
%P 6481-6496
Markdown (Informal)
[Quaff: Quantized Parameter-Efficient Fine-Tuning under Outlier Spatial Stability Hypothesis](https://aclanthology.org/2025.acl-long.325/) (Huang & Wu, ACL 2025)
ACL