@inproceedings{yin-etal-2025-floorplan,
title = "{F}loor{P}lan-{LL}a{M}a: Aligning Architects' Feedback and Domain Knowledge in Architectural Floor Plan Generation",
author = "Yin, Jun and
Zeng, Pengyu and
Sun, Haoyuan and
Dai, Yuqin and
Zheng, Han and
Zhang, Miao and
Zhang, Yachao and
Lu, Shuai",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.331/",
doi = "10.18653/v1/2025.acl-long.331",
pages = "6640--6662",
ISBN = "979-8-89176-251-0",
abstract = "Floor plans serve as a graphical language through which architects sketch and communicate their design ideas. Actually, in the Architecture, Engineering, and Construction (AEC) design stages, generating floor plans is a complex task requiring domain expertise and alignment with user requirements. However, existing evaluation methods for floor plan generation rely mainly on statistical metrics like FID, GED, and PSNR, which often fail to evaluate using domain knowledge. As a result, even high-performing models on these metrics struggle to generate viable floor plans in practice. To address this, (1) we propose ArchiMetricsNet, the first floor plan dataset that includes functionality, flow, and overall evaluation scores, along with detailed textual analyses. We trained FloorPlan-MPS (Multi-dimensional Preference Score) on it. (2) We develope FloorPlan-LLaMa, a floor plan generation model based on autoregressive framework. To integrate architects' professional expertise and preferences, FloorPlan-MPS serves as the reward model during the RLHF (Reinforcement Learning from Human Feedback) process, aligning FP-LLaMa with the needs of the architectural community. (3) Comparative experiments demonstrate that our method outperforms baseline models in both text-conditional and class-conditional tasks. Validation by professional architects confirms that our approach yields more rational plans and aligns better with human preferences."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yin-etal-2025-floorplan">
<titleInfo>
<title>FloorPlan-LLaMa: Aligning Architects’ Feedback and Domain Knowledge in Architectural Floor Plan Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pengyu</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haoyuan</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuqin</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miao</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yachao</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuai</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Floor plans serve as a graphical language through which architects sketch and communicate their design ideas. Actually, in the Architecture, Engineering, and Construction (AEC) design stages, generating floor plans is a complex task requiring domain expertise and alignment with user requirements. However, existing evaluation methods for floor plan generation rely mainly on statistical metrics like FID, GED, and PSNR, which often fail to evaluate using domain knowledge. As a result, even high-performing models on these metrics struggle to generate viable floor plans in practice. To address this, (1) we propose ArchiMetricsNet, the first floor plan dataset that includes functionality, flow, and overall evaluation scores, along with detailed textual analyses. We trained FloorPlan-MPS (Multi-dimensional Preference Score) on it. (2) We develope FloorPlan-LLaMa, a floor plan generation model based on autoregressive framework. To integrate architects’ professional expertise and preferences, FloorPlan-MPS serves as the reward model during the RLHF (Reinforcement Learning from Human Feedback) process, aligning FP-LLaMa with the needs of the architectural community. (3) Comparative experiments demonstrate that our method outperforms baseline models in both text-conditional and class-conditional tasks. Validation by professional architects confirms that our approach yields more rational plans and aligns better with human preferences.</abstract>
<identifier type="citekey">yin-etal-2025-floorplan</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.331</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.331/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>6640</start>
<end>6662</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FloorPlan-LLaMa: Aligning Architects’ Feedback and Domain Knowledge in Architectural Floor Plan Generation
%A Yin, Jun
%A Zeng, Pengyu
%A Sun, Haoyuan
%A Dai, Yuqin
%A Zheng, Han
%A Zhang, Miao
%A Zhang, Yachao
%A Lu, Shuai
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F yin-etal-2025-floorplan
%X Floor plans serve as a graphical language through which architects sketch and communicate their design ideas. Actually, in the Architecture, Engineering, and Construction (AEC) design stages, generating floor plans is a complex task requiring domain expertise and alignment with user requirements. However, existing evaluation methods for floor plan generation rely mainly on statistical metrics like FID, GED, and PSNR, which often fail to evaluate using domain knowledge. As a result, even high-performing models on these metrics struggle to generate viable floor plans in practice. To address this, (1) we propose ArchiMetricsNet, the first floor plan dataset that includes functionality, flow, and overall evaluation scores, along with detailed textual analyses. We trained FloorPlan-MPS (Multi-dimensional Preference Score) on it. (2) We develope FloorPlan-LLaMa, a floor plan generation model based on autoregressive framework. To integrate architects’ professional expertise and preferences, FloorPlan-MPS serves as the reward model during the RLHF (Reinforcement Learning from Human Feedback) process, aligning FP-LLaMa with the needs of the architectural community. (3) Comparative experiments demonstrate that our method outperforms baseline models in both text-conditional and class-conditional tasks. Validation by professional architects confirms that our approach yields more rational plans and aligns better with human preferences.
%R 10.18653/v1/2025.acl-long.331
%U https://aclanthology.org/2025.acl-long.331/
%U https://doi.org/10.18653/v1/2025.acl-long.331
%P 6640-6662
Markdown (Informal)
[FloorPlan-LLaMa: Aligning Architects’ Feedback and Domain Knowledge in Architectural Floor Plan Generation](https://aclanthology.org/2025.acl-long.331/) (Yin et al., ACL 2025)
ACL
- Jun Yin, Pengyu Zeng, Haoyuan Sun, Yuqin Dai, Han Zheng, Miao Zhang, Yachao Zhang, and Shuai Lu. 2025. FloorPlan-LLaMa: Aligning Architects’ Feedback and Domain Knowledge in Architectural Floor Plan Generation. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6640–6662, Vienna, Austria. Association for Computational Linguistics.