@inproceedings{mao-etal-2025-watermarking,
title = "Watermarking Large Language Models: An Unbiased and Low-risk Method",
author = "Mao, Minjia and
Wei, Dongjun and
Chen, Zeyu and
Fang, Xiao and
Chau, Michael",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.391/",
doi = "10.18653/v1/2025.acl-long.391",
pages = "7939--7960",
ISBN = "979-8-89176-251-0",
abstract = "Recent advancements in large language models (LLMs) have highlighted the risk of misusing them, raising the need for accurate detection of LLM-generated content. In response, a viable solution is to inject imperceptible identifiers into LLMs, known as watermarks. Our research extends the existing watermarking methods by proposing the novel Sampling One Then Accepting (STA-1) method. STA-1 is an unbiased watermark that preserves the original token distribution in expectation and has a lower risk of producing unsatisfactory outputs in low-entropy scenarios compared to existing unbiased watermarks. In watermark detection, STA-1 does not require prompts or a white-box LLM, provides statistical guarantees, demonstrates high efficiency in detection time, and remains robust against various watermarking attacks. Experimental results on low-entropy and high-entropy datasets demonstrate that STA-1 achieves the above properties simultaneously, making it a desirable solution for watermarking LLMs. Implementation codes for this study are available online."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mao-etal-2025-watermarking">
<titleInfo>
<title>Watermarking Large Language Models: An Unbiased and Low-risk Method</title>
</titleInfo>
<name type="personal">
<namePart type="given">Minjia</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongjun</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeyu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiao</namePart>
<namePart type="family">Fang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Chau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Recent advancements in large language models (LLMs) have highlighted the risk of misusing them, raising the need for accurate detection of LLM-generated content. In response, a viable solution is to inject imperceptible identifiers into LLMs, known as watermarks. Our research extends the existing watermarking methods by proposing the novel Sampling One Then Accepting (STA-1) method. STA-1 is an unbiased watermark that preserves the original token distribution in expectation and has a lower risk of producing unsatisfactory outputs in low-entropy scenarios compared to existing unbiased watermarks. In watermark detection, STA-1 does not require prompts or a white-box LLM, provides statistical guarantees, demonstrates high efficiency in detection time, and remains robust against various watermarking attacks. Experimental results on low-entropy and high-entropy datasets demonstrate that STA-1 achieves the above properties simultaneously, making it a desirable solution for watermarking LLMs. Implementation codes for this study are available online.</abstract>
<identifier type="citekey">mao-etal-2025-watermarking</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.391</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.391/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>7939</start>
<end>7960</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Watermarking Large Language Models: An Unbiased and Low-risk Method
%A Mao, Minjia
%A Wei, Dongjun
%A Chen, Zeyu
%A Fang, Xiao
%A Chau, Michael
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F mao-etal-2025-watermarking
%X Recent advancements in large language models (LLMs) have highlighted the risk of misusing them, raising the need for accurate detection of LLM-generated content. In response, a viable solution is to inject imperceptible identifiers into LLMs, known as watermarks. Our research extends the existing watermarking methods by proposing the novel Sampling One Then Accepting (STA-1) method. STA-1 is an unbiased watermark that preserves the original token distribution in expectation and has a lower risk of producing unsatisfactory outputs in low-entropy scenarios compared to existing unbiased watermarks. In watermark detection, STA-1 does not require prompts or a white-box LLM, provides statistical guarantees, demonstrates high efficiency in detection time, and remains robust against various watermarking attacks. Experimental results on low-entropy and high-entropy datasets demonstrate that STA-1 achieves the above properties simultaneously, making it a desirable solution for watermarking LLMs. Implementation codes for this study are available online.
%R 10.18653/v1/2025.acl-long.391
%U https://aclanthology.org/2025.acl-long.391/
%U https://doi.org/10.18653/v1/2025.acl-long.391
%P 7939-7960
Markdown (Informal)
[Watermarking Large Language Models: An Unbiased and Low-risk Method](https://aclanthology.org/2025.acl-long.391/) (Mao et al., ACL 2025)
ACL