@inproceedings{zhang-etal-2025-growing,
title = "Growing Through Experience: Scaling Episodic Grounding in Language Models",
author = "Zhang, Chunhui and
Wang, Sirui and
Ouyang, Zhongyu and
Yuan, Xiangchi and
Vosoughi, Soroush",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.409/",
doi = "10.18653/v1/2025.acl-long.409",
pages = "8363--8375",
ISBN = "979-8-89176-251-0",
abstract = "Language models (LMs) require effective episodic grounding{---}the ability to learn from and apply past experiences{---}to perform well at physical planning tasks. While current approaches struggle with scalability and integration of episodic memory, which is particularly limited for medium-sized LMs (7B parameters), larger LMs (70-405B) offer untapped potential through their hierarchical representations and extensive pre-trained knowledge. Therefore, to unlock larger LMs' potential for grounding, we present a scalable weak-to-strong episodic learning framework that efficiently transfers episodic behaviors from smaller to larger LMs. It uses Monte Carlo tree search for structured experience collection with a novel distillation method that preserves LM capabilities while incorporating episodic memory. This enables larger LMs to leverage their inherent advantages for improved physical planning. Experiments show our solution outperforms top proprietary LMs by 3.45{\%} across diverse planning and question-answering tasks. Layer-wise probing reveals systematic improvements in task alignment, particularly in later LM layers. It shows stable generalization to even unseen scenarios, even as planning steps increase, whereas baselines deteriorate sharply beyond a complexity threshold of four planning steps."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2025-growing">
<titleInfo>
<title>Growing Through Experience: Scaling Episodic Grounding in Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chunhui</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sirui</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongyu</namePart>
<namePart type="family">Ouyang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangchi</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soroush</namePart>
<namePart type="family">Vosoughi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Language models (LMs) require effective episodic grounding—the ability to learn from and apply past experiences—to perform well at physical planning tasks. While current approaches struggle with scalability and integration of episodic memory, which is particularly limited for medium-sized LMs (7B parameters), larger LMs (70-405B) offer untapped potential through their hierarchical representations and extensive pre-trained knowledge. Therefore, to unlock larger LMs’ potential for grounding, we present a scalable weak-to-strong episodic learning framework that efficiently transfers episodic behaviors from smaller to larger LMs. It uses Monte Carlo tree search for structured experience collection with a novel distillation method that preserves LM capabilities while incorporating episodic memory. This enables larger LMs to leverage their inherent advantages for improved physical planning. Experiments show our solution outperforms top proprietary LMs by 3.45% across diverse planning and question-answering tasks. Layer-wise probing reveals systematic improvements in task alignment, particularly in later LM layers. It shows stable generalization to even unseen scenarios, even as planning steps increase, whereas baselines deteriorate sharply beyond a complexity threshold of four planning steps.</abstract>
<identifier type="citekey">zhang-etal-2025-growing</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.409</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.409/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>8363</start>
<end>8375</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Growing Through Experience: Scaling Episodic Grounding in Language Models
%A Zhang, Chunhui
%A Wang, Sirui
%A Ouyang, Zhongyu
%A Yuan, Xiangchi
%A Vosoughi, Soroush
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F zhang-etal-2025-growing
%X Language models (LMs) require effective episodic grounding—the ability to learn from and apply past experiences—to perform well at physical planning tasks. While current approaches struggle with scalability and integration of episodic memory, which is particularly limited for medium-sized LMs (7B parameters), larger LMs (70-405B) offer untapped potential through their hierarchical representations and extensive pre-trained knowledge. Therefore, to unlock larger LMs’ potential for grounding, we present a scalable weak-to-strong episodic learning framework that efficiently transfers episodic behaviors from smaller to larger LMs. It uses Monte Carlo tree search for structured experience collection with a novel distillation method that preserves LM capabilities while incorporating episodic memory. This enables larger LMs to leverage their inherent advantages for improved physical planning. Experiments show our solution outperforms top proprietary LMs by 3.45% across diverse planning and question-answering tasks. Layer-wise probing reveals systematic improvements in task alignment, particularly in later LM layers. It shows stable generalization to even unseen scenarios, even as planning steps increase, whereas baselines deteriorate sharply beyond a complexity threshold of four planning steps.
%R 10.18653/v1/2025.acl-long.409
%U https://aclanthology.org/2025.acl-long.409/
%U https://doi.org/10.18653/v1/2025.acl-long.409
%P 8363-8375
Markdown (Informal)
[Growing Through Experience: Scaling Episodic Grounding in Language Models](https://aclanthology.org/2025.acl-long.409/) (Zhang et al., ACL 2025)
ACL