@inproceedings{zamaraeva-etal-2025-comparing,
title = "Comparing {LLM}-generated and human-authored news text using formal syntactic theory",
author = "Zamaraeva, Olga and
Flickinger, Dan and
Bond, Francis and
G{\'o}mez-Rodr{\'i}guez, Carlos",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.443/",
doi = "10.18653/v1/2025.acl-long.443",
pages = "9041--9060",
ISBN = "979-8-89176-251-0",
abstract = "This study provides the first comprehensive comparison of New York Times-style text generated by six large language models against real, human-authored NYT writing. The comparison is based on a formal syntactic theory. We use Head-driven Phrase Structure Grammar (HPSG) to analyze the grammatical structure of the texts. We then investigate and illustrate the differences in the distributions of HPSG grammar types, revealing systematic distinctions between human and LLM-generated writing. These findings contribute to a deeper understanding of the syntactic behavior of LLMs as well as humans, within the NYT genre."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zamaraeva-etal-2025-comparing">
<titleInfo>
<title>Comparing LLM-generated and human-authored news text using formal syntactic theory</title>
</titleInfo>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Zamaraeva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Flickinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Gómez-Rodríguez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>This study provides the first comprehensive comparison of New York Times-style text generated by six large language models against real, human-authored NYT writing. The comparison is based on a formal syntactic theory. We use Head-driven Phrase Structure Grammar (HPSG) to analyze the grammatical structure of the texts. We then investigate and illustrate the differences in the distributions of HPSG grammar types, revealing systematic distinctions between human and LLM-generated writing. These findings contribute to a deeper understanding of the syntactic behavior of LLMs as well as humans, within the NYT genre.</abstract>
<identifier type="citekey">zamaraeva-etal-2025-comparing</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.443</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.443/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>9041</start>
<end>9060</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparing LLM-generated and human-authored news text using formal syntactic theory
%A Zamaraeva, Olga
%A Flickinger, Dan
%A Bond, Francis
%A Gómez-Rodríguez, Carlos
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F zamaraeva-etal-2025-comparing
%X This study provides the first comprehensive comparison of New York Times-style text generated by six large language models against real, human-authored NYT writing. The comparison is based on a formal syntactic theory. We use Head-driven Phrase Structure Grammar (HPSG) to analyze the grammatical structure of the texts. We then investigate and illustrate the differences in the distributions of HPSG grammar types, revealing systematic distinctions between human and LLM-generated writing. These findings contribute to a deeper understanding of the syntactic behavior of LLMs as well as humans, within the NYT genre.
%R 10.18653/v1/2025.acl-long.443
%U https://aclanthology.org/2025.acl-long.443/
%U https://doi.org/10.18653/v1/2025.acl-long.443
%P 9041-9060
Markdown (Informal)
[Comparing LLM-generated and human-authored news text using formal syntactic theory](https://aclanthology.org/2025.acl-long.443/) (Zamaraeva et al., ACL 2025)
ACL