@inproceedings{reheman-etal-2025-enhancing,
title = "Enhancing Neural Machine Translation Through Target Language Data: A $k${NN}-{LM} Approach for Domain Adaptation",
author = "Reheman, Abudurexiti and
Liu, Hongyu and
Ruan, Junhao and
Abudula, Abudukeyumu and
Luo, Yingfeng and
Xiao, Tong and
Zhu, JingBo",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.496/",
doi = "10.18653/v1/2025.acl-long.496",
pages = "10053--10065",
ISBN = "979-8-89176-251-0",
abstract = "Neural machine translation (NMT) has advanced significantly, yet challenges remain in adapting to new domains . In scenarios where bilingual data is limited, this issue is further exacerbated. To address this, we propose $k$NN-LM-NMT, a method that leverages semantically similar target language sentences in the $k$NN framework. Our approach generates a probability distribution over these sentences during decoding, and this distribution is then interpolated with the NMT model{'}s distribution. Additionally, we introduce an $n$-gram-based approach to focus on similar fragments, enabling the model to avoid the noise introduced by the non-similar parts. To enhance accuracy, we further incorporate cross-lingual retrieval similarity to refine the $k$NN probability distribution. Extensive experiments on multi-domain datasets demonstrate significant performance improvements in both high-resource and low-resource scenarios. Our approach effectively extracts translation knowledge from limited target domain data, and well benefits from large-scale monolingual data for robust context representation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="reheman-etal-2025-enhancing">
<titleInfo>
<title>Enhancing Neural Machine Translation Through Target Language Data: A kNN-LM Approach for Domain Adaptation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abudurexiti</namePart>
<namePart type="family">Reheman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyu</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junhao</namePart>
<namePart type="family">Ruan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abudukeyumu</namePart>
<namePart type="family">Abudula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yingfeng</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tong</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JingBo</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Neural machine translation (NMT) has advanced significantly, yet challenges remain in adapting to new domains . In scenarios where bilingual data is limited, this issue is further exacerbated. To address this, we propose kNN-LM-NMT, a method that leverages semantically similar target language sentences in the kNN framework. Our approach generates a probability distribution over these sentences during decoding, and this distribution is then interpolated with the NMT model’s distribution. Additionally, we introduce an n-gram-based approach to focus on similar fragments, enabling the model to avoid the noise introduced by the non-similar parts. To enhance accuracy, we further incorporate cross-lingual retrieval similarity to refine the kNN probability distribution. Extensive experiments on multi-domain datasets demonstrate significant performance improvements in both high-resource and low-resource scenarios. Our approach effectively extracts translation knowledge from limited target domain data, and well benefits from large-scale monolingual data for robust context representation.</abstract>
<identifier type="citekey">reheman-etal-2025-enhancing</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.496</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.496/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>10053</start>
<end>10065</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Neural Machine Translation Through Target Language Data: A kNN-LM Approach for Domain Adaptation
%A Reheman, Abudurexiti
%A Liu, Hongyu
%A Ruan, Junhao
%A Abudula, Abudukeyumu
%A Luo, Yingfeng
%A Xiao, Tong
%A Zhu, JingBo
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F reheman-etal-2025-enhancing
%X Neural machine translation (NMT) has advanced significantly, yet challenges remain in adapting to new domains . In scenarios where bilingual data is limited, this issue is further exacerbated. To address this, we propose kNN-LM-NMT, a method that leverages semantically similar target language sentences in the kNN framework. Our approach generates a probability distribution over these sentences during decoding, and this distribution is then interpolated with the NMT model’s distribution. Additionally, we introduce an n-gram-based approach to focus on similar fragments, enabling the model to avoid the noise introduced by the non-similar parts. To enhance accuracy, we further incorporate cross-lingual retrieval similarity to refine the kNN probability distribution. Extensive experiments on multi-domain datasets demonstrate significant performance improvements in both high-resource and low-resource scenarios. Our approach effectively extracts translation knowledge from limited target domain data, and well benefits from large-scale monolingual data for robust context representation.
%R 10.18653/v1/2025.acl-long.496
%U https://aclanthology.org/2025.acl-long.496/
%U https://doi.org/10.18653/v1/2025.acl-long.496
%P 10053-10065
Markdown (Informal)
[Enhancing Neural Machine Translation Through Target Language Data: A kNN-LM Approach for Domain Adaptation](https://aclanthology.org/2025.acl-long.496/) (Reheman et al., ACL 2025)
ACL